S.L. Electronics & telecommunication

SEM TT

Con. 3015-10.

0. Electronic Instrumentation AN-2542 (3 Hours) [Total Marks: 100

and can be read to X of division. Calculte

- N. B.: (1) Question No. 1 is compulsory. Commonled ent nision? neoubenent
 - (2) Attempt any four questions from remaining six questions.
 - (3) Assume data if required but justify the same.
- 1. Answer any four questions:-
 - (a) Explain the functions of delay line in CRO.
 - (b) What are the criteria for selection of a transducer ?
 - (c) What are the various sources of error in a Q-meter ?
 - (d) Which is the fastest ADC and why ?
 - (e) A voltmeter reading 70 V on its 100 V range and an ammeter reading 80mA on its 150mA range are used to determine power dissipated in a resistor. Both these instruments are guaranteed to be a accurate within \pm 1.5% at full scale deflection. Determine the limiting error of power.
- (a) How does a Digital Storage oscilloscope differ from a conventional CRO using 10 storage CRT. Explain the principle and block diagram of DSO.
 - (b) A 4½ digit voltmeter is used for voltage measurement. Find the resolution. 6 How would values 12.98 V and 0.6973 displayed on 10 V ranges.
 - (c) Write a short note on Automatic Test Equipment.
- (a) What is the need of modulation in data transmission? Explain with waveforms 10 the various digital modulation techniques.
 - (b) Explain the function of timebase generator in a CRO.
 - (c) A stream gauge with a gauge factor of 2 is fastened to a metallic member subjected to a stress of 1000 kg/cm². The modulus of elasticity of metal is 2 x 10⁶ kg/cm². Calculate the percentage change in resistance of strain gauge. What is the value of Poisson's ratio.
- (a) Explain the operation of 4 bit R-2R type of DAC. Derive the expression for 10 output voltage.
 - (b) Explain the basic telemetry system and its applications in instrumentation. 6
 - (c) In a CRT the anode to cathode voltage is 2500 V. The parallel deflection plates 4 are 1.5 cm long and spaced 5mm. The screen is 50cm from the centre of the deflecting plates. If mass of electron is 9.109 x 10⁻³¹kg and charge of electron is 1.602 x 10⁻¹⁹ C fuid—
 - (i) Beam speed
 - (ii) Deflection Sensitivity.
- (a) What is a True RMS meter and how does it deffer from a DMM. Explain the 10 principle and working of a true RMS meter with a thermocouple.
 - (b) What is the principle of piezoelectric transducer. What are the materials used in these transducers. Give the merits, demerits and applications.
 - (c) Write a short note on data loggers.

[TURN OVER

4

20

4

Con. 3015-AN-2542-10. 2

6. (a) What is the advantage of taking a differential output from an inductive transducer. Explain the performance characteristics and its applications. The output of LVDT is connected to 4 V voltmeter through an amplifier whose amplification factor is 500. An output of 1.8mV appears across the terminals of LVDT when the core moves through 0.6 mm. If the mV scale has 100 divisions and can be read to ¼ of division, Calculte the sensitivity and resolution of LVDT.

10

6

- (b) What is meant by network analysis. Explain the analogy of two port linear networks with microwave networks.
- (c) Explain the lissajous method for frequency and phase measurement.

oltmeter reading 70 V on its 100.V range and an ammeter reading 80mA

- (a) What is the basic principle of wave analyzer. Explain the heterodyne wave 10 analyzer with applications.
 - (b) A dual slope ADC uses 16 bits counter and a 4MHz clock rate. The maximum input voltage is +10 V. The maximum integrator output voltage should be 8V when counter cycled through 2ⁿ counts. If the capacitor of 0.1μF is used, find the value of resistor of integrator.

How would values 12.98 V and those openinged on 10 V ranges.

(c) Write a short note on eddy current sensor.

S.F. Electronics & Felecom SEMI

Con. 3150-10.

Electronics Devices & circuits-I.

(3 Hours)

AN-2536

[Total Marks : 100

- N.B.: (1) Question No. 1 and 2 is compulsory.
 - (2) Out of remaining questions attempt any three questions.
 - (3) In all five questions to be attempted.
 - (4) Figures to the right indicate full marks.
- Design a single stage R-C coupled CE amplifier for low frequency range 10 Hz to 20 20 KHz to give voltage gain | Av | ≥ 100 with stability factor S ≤ 10 and ouput voltage V₀ = 2.5 V(rms). Use BC 147 B and specify V_{cc} required. Calculate A_v, R_i, R_o of designed circuit.
- 2. (a) Design an R–C coupled CS amplifier using FETBW–II to meet the following 15 specifications $|A_V| \ge 15$, $I_{DSO} = 1.2 \text{ mA}$, $F_v \le 20 \text{ Hz}$, $V_o = 2.5 \text{ V}$, $R_i \ge 1 \text{ M}$ ohm.
 - (b) A certain JFET has $I_{DSS} = 15$ mA and pinch off voltage $V_P = -5V$. Calculate value 5 of transconductance for $V_{GS} = -2V$.
- 3. (a) For full wave rectifier with center tapped transformer (15–0–15) rms, 50 Hz, 15 $R_1 = 20 \Omega$
 - (i) Find V_{dc}, I_{dc} and ripple factor.
 - (ii) Repeat part 1 if 100 mH inductor is present in series with load.
 - (iii) Repeat part 1 if 20 μ F is considered and is shunted across the load.
 - (b) Draw UJT equivalent circuit and explain UJT characteristic curve.
- 4. (a) Find Z₀, Z_i, A_v, Ai for the network given :

(b) Explain the concept of zero Temperature drift in JFET.

5

(b) Explain the concept of zero Temperature unit in or E...

- 5. (a) For a shunt zener regulators giving output voltage is 15V and load resistance 10 varying from 10 K Ω to 15 K Ω . V_{in} is varying between 20 to 24 V. Find :
 - (i) R series resistance (iii) S_v (ii) $P_2(max)$ (iv) R_0 .

Take $R_2 = 8\Omega$ $I_{2(min)} = 50 \mu A$

- (b) Explain the concept of Thermal runaway in BJT.
- (c) Explain Latching current and holding current in SCR.
- 6. (a) Explain various methods of biasing JFET and MOSFET.
 - (b) Describe four ways an SCS can be turned off.
- 7. Write short notes on following :-
 - (a) Compare Diac and Triac
 - (b) Power MOSFET

(c) Critical inductance in filter(d) UJT relaxation oscillators.

20

TURN OVER

DBEC DATA SHEET

Transistor type	Pdmax @ 25°C Walls	Icmax @ 25°C Amps	V _{ce} (sal) volis d.c.	V _{CBO} volts d.c.	V _{CEO} (Sus) volis d.c.	V _{CER} (Sus) volis d.c.	V _{cex} volts d.c.	V _{BEO} volis d.c.	T, mai °C	(D.C. min	current typ.	gai max	n S c. I	mall nin.	Signal typ.	l h	ax.	V _{BE} max.	• C/W	Derate above 25°C W/°C
2N3055	115-5	15.0	1.1	100	60	70	90	7	200		20	50	70	- 3	15	50	- 1	20	1.8	1.5	0.7
ECN055	50.0	5.0	1.0	60	50	55	60	5	200		25	50	100		25	75	1	25	1.5	3.5	0.4
ECN149	30.0	4.0	1.0	50	40	5- 4		8	150		30	50	110		33	60	1	15	1.2	4.0	0.3
ECN100	5-0	0.7	0.6	70	60	65	14:1	6	200		50	90	280		50	90	2	80	0.9	35	
BC147A	0.25	0.1	0-25	50	45	50	- 2	6	125		115	180	220	1	25	220	2	60	0.9		
2N525(PNP)	0.225	0.5	0.25	85	30			-	100		35		65			45			ā	_	
BC147B	0.25	0.1	0.25	50	45	50	-	6	125		200	290	450	2	40	330	5	00	0.9		-
Transistor type	hie	hoe	hi	re	oia	BFW	11— <i>JF</i>	ET MUTU	UAL CH	ARA	CTERIS	TICS		000				4	High	2	5
	22 40	10	1.5	10.4		-VGS	volts	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.6	2.0	2-4	2.5	3.0	3.5	4.0
DC 14/A	2.1 K 12	184 0	1.5 ×	10-	0.4°C/mw	Ins m	ar mA	10	0.0	0 2	7.6	60	61	5 4	112	21	. 2.2	20	11	0.5	0.0
LIV JLJ (FIVF)	1.4 K 12	204 0	3.2 ×	< 10-		105 111	ax. IIIA	10	9.0	0.0	1.0	0.0	0.1	5.4	4.2	2.1	2.7	2.0	1.1	0.5	0.0
DC 1410	4.5 K 12	304 0	27	< 10-	0.4°C/mw	los ty	p. mA	7.0	6.0	5.4	4.6	4.0	3.3	2.7	1.7	0.8	0.2	0.0	0.0	0.0	0-0
						IDS min. m.		4.0	3.0	2.2	1.6	1.0	0-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-Channel JFE	r g g																				
Туре		V _{os} max. Volis	V _{oc} Vo	max. olts	V _{cs} max. Volis	P, max. @25°C	T	, max.	l _{oss}		8,	na	8	-Vp Vo	lts	r d		Der above	ate 25°C	е -8 5°С	
2N3822	E a a	50	5	50	50	300 mW	1	175°C		2 mA		3000 μΩ		6		50 KΩ	2 mW/°C		/°C	0.59°C/mW	
BFW 11 (typical)	1009	30	3	30	30	300 mW	2	200°C		7 mA		5000 μΩ		2.5		50 KΩ	1	2			59° C/mW
Dea Dea Deal Deal Deal Deal	in A										N		3		2118		GIG	No.	Sing	N EN	
UJT type	P, max. @25°C	I _E max. @25°C	I, peak pulse current max.		V _{B2E} Volis max	V _{B2B1} Volts		T _j max		η min. max.		R min	R _{BB} KΩ min. lyp.		Max.	max	<i>I_P</i> x. 1	µA min. mA		I _{EO} mA μA	
2N2646	300mW	50mA	2Amp.		30	35		125°C		0.56 0.75		4.7	4.7 7.0		9.1	5.0		5.0	4.0 -2.0		
The second se	and the same in the same states and the same	and the first state of the first state of the	and the second state of th		and the second se	the second s	the second s		and the second second second		d and the second se		and in case of the other data	and the second se	100000000000000000000000000000000000000	a second s	and the second second	The second second	the state of the s		and the second second second second

S.F. Electronics & telecomunication Sem II / Applied math II

Con. 3867-10.

(REVISED COURSE)

AN-2548

(3 Hours)

[Total Marks : 100

[5]

[5]

[7]

- N.B. (i) Question No.1 is compulsory
 - (ii) Answer any four out of the remaining six questions
 - (iii) Figures to the right indicate full marks
 - 1. (a) Find the Laplace transform of $\int u \cos^2 u du$.
 - (b) Show that every skew Hermitian matrix can be expressed as P+iQ where P is a real skew symmetric matrix and Q is a real symmetric matrix. [5]

(c) Find the Z transforms of (i) $\delta(n-k)$ where $\delta(k) = \begin{cases} 1, k=0\\ 0 \text{ otherwise} \end{cases}$ and

(ii)
$$U(k) = \begin{cases} 1, \ k \ge 0 \\ 0 \ \text{otherwise} \end{cases}$$
 [5]

(d) Obtain the Fourier series of

 $f(x) = \begin{cases} 0, & -\pi \le x \le 0\\ x^2, & 0 \le x \le \pi \end{cases}$ where f(x) is periodic with period 2π .

2. (a) Find non-singular matrices P and Q such that the normal form of :--

$$A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$$
 is *PAQ*. What is the rank of *A*?

(b) Obtain the inverse Laplace transforms of the following:

(i)
$$\frac{3s+7}{s^2-2s-3}$$
 (ii) $\frac{s+2}{(s+3)(s+1)^3}$ [7]

(c) Find the Fourier integral representation of the function:

$$f(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & x = 0 \\ e^{-x}, & x > 0 \end{cases}$$

[6]

3. (a) Find $\int \cos(tx^2) dx$ and hence evaluate $\int \cos x^2 dx$

(b) Find the inverse Z transform of (i) $(z-5)^{-3}$ when |z| > 5

(ii)
$$\frac{z^2}{(z-1)(z-\frac{1}{2})}$$
, for $1/2 < |z| < 1$. [7]

(c) Define an orthogonal matrix. Is $A = \begin{bmatrix} \cos a \cos b & \sin b & \cos b \sin a \\ -\sin b \cos a & \cos b & -\sin b \sin a \\ -\sin a & \cos a & 0 \end{bmatrix}$ orthogonal?

[TURN OVER

[6]

[7]

Con. 3867-AN-2548-10.

4.

(a) (i) Solve by the Gauss-Jordan method:

$$3x+2y-2z = 11$$

$$x-2y+3z = -9$$

$$2x+3y+4z = 0$$
(ii) Solve by the Gauss-Seidel method: (Go up to 3 iterations):

$$10x+y+z = 10$$

$$2x+10y+z = 11$$

$$2x+2y+10z = -6$$
[3+4]

2

(b) Obtain the Fourier series of $f(x) = \sqrt{1 - \cos x}$ in the interval $(0, 2\pi)$.

Deduce that
$$\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
 [7]

[6]

(c) Find the Fourier transform of: $f(x) = e^{-|x|}$

5. (a) Find the half-range sine series for $f(x) = \frac{\pi}{4}$ in $(0, \pi)$. Deduce that

(i)
$$\frac{\pi}{4}(\frac{\pi}{2}-x) = \frac{1}{1^2}\cos x + \frac{1}{3^2}\cos 3x + \frac{1}{5^2}\cos 5x + \dots$$

(ii) $\frac{\pi}{8}x(\pi-x) = \frac{1}{1^3}\sin x + \frac{1}{3^3}\sin 3x + \frac{1}{5^3}\sin 5x + \dots$ [7]

(b) Solve using Laplace transforms:

$$\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 20\sin t, \ y(0) = 1 \ and \ y'(0) = 2.$$
 [7]

(c) Discuss for what values of λ and μ , the following system of equations :

$$\begin{aligned} x + y + z &= 6\\ x + 2y + 3z &= 10 \end{aligned}$$

$$x+2y+\lambda z = \mu$$

has (i) no solution (ii) a unique solution and (iii) infinite number of solutions. [6]

6. (a) State the convolution theorem for Z-transforms. Use the theorem to find Z(h(k)) where h(k) is the convolution of f₁(k) = 1/(2^k), k≥0 and f₂(k) = cos kπ, k≥0 [7]

(b) (i) Express f(t) = {2t, 0 < t < 1 3t² t > 1 and find its Laplace Transform.
(ii) Evaluate using Laplace Transform: ∫e^{-t}(1+2t-t²+t³)H(t-1) dt where

H(t) is the Heaviside's unit step function. [7] (c) Find the Fourier series of f(x) = x |x| in (-1,1). [6]

 $\int_{0}^{\infty} \tan^{-1}\left(\frac{x}{a}\right) \sin x \, dx. \qquad [7]$

(b) Obtain the Laplace transform of (i) $t^2 e' \sin 4t$ (ii) $\frac{\cosh 2t \sin 2t}{t}$ [7]

(c) When do you say that vectors $X_1, X_2, ..., X_n$ are linearly dependent? Are the vectors $X_1 = \begin{bmatrix} 1 & 3 & 4 & 2 \end{bmatrix}$, $X_2 = \begin{bmatrix} 2 & -1 & 3 & 2 \end{bmatrix}$, $X_3 = \begin{bmatrix} 3 & -5 & 2 & 2 \end{bmatrix}$ linearly dependent? [6]

•5	st n	renjeoro S.E. Electronics & telecommunication						
mT-F-istHf: 506 SEM TT								
Co	on. 3	007-10. Digital Logic Design AN-25	539					
		(3 Hours) [Total Marks :	100					
	N.B.	 Question No. 1 is compulsory. Attempt any four questions out of remaining six questions. Assume suitable data if necessary. 						
1.	(a) (b)	Explain the difference between error detecting codes and error correcting codes. Determine the value of x, (211) = (152)	5 5					
	(c) (d)	Explain D Flip-Flop. 4-bits magnitude comparator.	5 5					
2.	(a) (b) (c)	Explain interfacing of T.T.L. and CMOS logic families. Explain parameter's of logic families. Explain RTL logic family.	8 8 4					
Q	(2)	Prove the following using Boolean Theorems :	6					
0.	(u)	(i) $\left[\left(\overline{C} + \overline{C}\overline{D}\right)\left(\overline{C} + \overline{C}\overline{D}\right)\right]\left[\left(\overline{AB} + \overline{A}\overline{B} + \overline{A} \oplus B\right)\right] = C$	0					
		(ii) $\overline{A}BC + A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} = AB + AC + BC$						
	(b)	Minimise the expression using Quine McCluskey method. $f(A B C D) = \sum m (1, 3, 7, 9, 10, 11, 13, 15)$ Bealise expression using minimum NAND gates only	10					
	(0)	$y = A \overline{B} + A\overline{C} + C + A D + A \overline{B} C + A B C$	4					
4.	(a)	The circuit has four I/ps and two O/ps one of the outputs is to be true when the majority of inputs are false. The other o/p's is true only when there are equal number of true and false in the inputs. Design and implement combinational circuit using NAND gates only.						
0	(b)	Implement an even parity checker for a 4 bit data, using 8 : 1 mux and inverters.	10					
5.	(a) (b)	Explain Master slave JK-FF. Convert T FF to D FF.	10 10					
6.	(a)	Design ripple counter for state diagram shown.	10					
		$ \rightarrow \bigcirc \rightarrow $						
	(b)	Explain Johnson counter.	10					
7.	(a)	What are decoding glitehes and how these can be eliminated ?	10					

(a) What are decoding gitteness and now mose to Explain universal shift register.(b) Implement 8-bit adder using 4-bit full adder.

SE/ELTC/Telecommunicerion

Ist-half-NK-TUBB 16/

Sem JIT

Con. 3245-10.

Electrical Networks AN-2545

(3 Hours)

[Total Marks : 100

20

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.
 - (3) Assume any suitable data if necessary and state it clearly.
 - (4) All questions carry equal marks (20 each).
 - (a) The Z parameters of a two-port network are Z₁₁ = 20 Ω, Z₂₂ = 30 Ω, Z₁₂ = Z₂₁ = 10 Ω. Find ABCD parameters.
 (b) Paduard insidence matrix is given below :
 - (b) Reduced incidence matrix is given below :

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix}$$

Draw the oriented graph.

(c) Find the time constant of the following circuit.

(d) Write a differential equation valid for t > 0 for the circuit shown in figure.

(e) Find the second order differential equation for the circuit shown in figure.

(f) Write the V-I relationships and their S-domain equivalents for Resistor, Inductor and Capacitor.

Con. 3245-AN-2545-10. 22

(g) Determine the system function if the d.c. gain of the system is 10 and Pole zero plot is as shown in **figure**.

TIT MSZ

(h) Find the Z-parameters of the network shown in figure.

- (i) Explain network synthesis by Foster form.
- (i) What is Bode Plot ? Explain.
- 2. (a) For the circuit shown in **figure**. Determine the value of voltage V₂ such that **10** the current I is zero.

10

(b) For the circuit shown in **figure** find i_1 , i_2 , $\frac{di_1}{dt}$ and $\frac{di_2}{dt}$ at t = 0+

Con. 3245-AN-2545-10.

3. (a) Find i(t) using Thevenin's theorem in 'S' domain. Find initial value and final 10 value of i(t) using Laplace transform theorem.

3

3045-AM-2545-10:1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1

(b) Calculate $\frac{V_2}{V_1}$, $\frac{I_2}{I_1}$, $\frac{V_1}{I_1}$, $\frac{V_2}{I_1}$ for the ladder network shown in **figure**.

4. (a) (i) Define Z, Y, ABCD and h parameters for a two port network. (ii) The port currents of a two port network are given by

$$I_1 = 2.5 V_1 - V_2$$

 $I_2 = -V_1 + 5V_2$

Find equivalent π network. (b) Synthesize the following function in Cauer I and II forms

$$Z(s) = \frac{s^5 + 7s^3 + 10s}{s^4 + 4s^2 + 3}$$

Find the current I, using mesh analysis. 5. (a) (i)

10

5

Con. 3245-AN-2545-10.

(ii) For the maximum power transfer find the value of Z₁ if (1) Z_{L} is impedance (2) Z_{L} is pure resistance.

(b) State giving reasons whether the following functions are positive real.

(i)
$$Y(s) = 5.$$
 $\frac{s^2 + 2s + 1}{s^3 + 2s^2 + 2s + 40}$

(ii)
$$Y(s) = \frac{s^3 + 5s}{s^4 + 2s^2 + 1}$$
.

6. (a) Sketch the asymptotic Bode Plot for

$$G(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

From the Bode Plot determine-

- (i) W_{pc} (Phase crossover frequency)
 (ii) W_{gc} (Gain crossover frequency) (ii)
- GM (iiii)
- (iv) PM
- (b) Test whether the following polynomials are Hurwitz
 - (i) $s^5 + 8s^4 + 24s^3 + 28s^2 + 23s^1 + 6$
 - (ii) $2s^6 + s^5 + 13s^4 + 6s^3 + 56s^2 + 25s^1 + 25$.
- 7. (a) In the network shown in figure switch 'K' is initially kept open and network 10 reaches steady state. At t = 0, switch 'K' is closed. Find an expression for the current through the inductor for t > 0. Also sketch the waveform.

10 (b) For the circuit shown in figure draw the oriented graph and write-(iii) f-tieset matrix (i) incidence matrix (ii) f-cutset matrix

12

8

10

Con. 3015-10.

Jub : F.I

CAIL

AN-2542

20

4

6

evitoubning monthuguo leite (3 Hours) and a contract [Total Marks : 100

KEV/ K.I.

- N. B.: (1) Question No. 1 is compulsory. To some money and mislox 3 receiver and
 - (2) Attempt any four questions from remaining six questions.
 - (3) Assume data if required but justify the same.
- 1. Answer any four questions:- educated anoisivib to A of been ed aso
 - (a) Explain the functions of delay line in CRO.
 - (b) What are the criteria for selection of a transducer ?
 - (c) What are the various sources of error in a Q-meter ?
 - (d) Which is the fastest ADC and why ? The boddem available and mining a (a)
 - (e) A voltmeter reading 70 V on its 100 V range and an ammeter reading 80mA on its 150mA range are used to determine power dissipated in a resistor. Both these instruments are guaranteed to be a accurate within \pm 1.5% at full scale deflection. Determine the limiting error of power.
- (a) How does a Digital Storage oscilloscope differ from a conventional CRO using 10 storage CRT. Explain the principle and block diagram of DSO.
 - (b) A 4½ digit voltmeter is used for voltage measurement. Find the resolution. 6 How would values 12.98 V and 0.6973 displayed on 10 V ranges.
 - (c) Write a short note on Automatic Test Equipment.
- (a) What is the need of modulation in data transmission? Explain with waveforms 10 the various digital modulation techniques.
 - (b) Explain the function of timebase generator in a CRO.
 - (c) A stream gauge with a gauge factor of 2 is fastened to a metallic member 4 subjected to a stress of 1000 kg/cm². The modulus of elasticity of metal is 2 x 10⁶ kg/cm². Calculate the percentage change in resistance of strain gauge. What is the value of Poisson's ratio.
- (a) Explain the operation of 4 bit R-2R type of DAC. Derive the expression for 10 output voltage.
 - (b) Explain the basic telemetry system and its applications in instrumentation. 6
 - (c) In a CRT the anode to cathode voltage is 2500 V. The parallel deflection plates 4 are 1.5 cm long and spaced 5mm. The screen is 50cm from the centre of the deflecting plates. If mass of electron is 9.109 x 10⁻³¹kg and charge of electron is 1.602 x 10⁻¹⁹ C fuid—
 - (i) Beam speed
 - (ii) Deflection Sensitivity.
- (a) What is a True RMS meter and how does it deffer from a DMM. Explain the 10 principle and working of a true RMS meter with a thermocouple.
 - (b) What is the principle of piezoelectric transducer. What are the materials used in these transducers. Give the merits, demerits and applications.
 - (c) Write a short note on data loggers.

[TURN OVER

Con. 3015-AN-2542-10.

6. (a) What is the advantage of taking a differential output from an inductive transducer. Explain the performance characteristics and its applications. The output of LVDT is connected to 4 V voltmeter through an amplifier whose amplification factor is 500. An output of 1.8mV appears across the terminals of LVDT when the core moves through 0.6 mm. If the mV scale has 100 divisions and can be read to ¼ of division, Calculte the sensitivity and resolution of LVDT.

dis

(b) What is meant by network analysis. Explain the analogy of two port linear networks with microwave networks.

10

- (c) Explain the lissajous method for frequency and phase measurement.
- (a) What is the basic principle of wave analyzer. Explain the heterodyne wave 10 analyzer with applications.
 - (b) A dual slope ADC uses 16 bits counter and a 4MHz clock rate. The maximum input voltage is +10 V. The maximum integrator output voltage should be 8V when counter cycled through 2ⁿ counts. If the capacitor of 0.1μF is used, find the value of resistor of integrator.
 - (c) Write a short note on eddy current sensor.

cannenaved on 10 V ranges.