AGJ 181 half (x) 45 2 | 6 | 2011

Note: I Question No. 1 is compulsory

3. Assume suitable data if necessary.

4. Figures to the right indicates full marks.

Con. 3988-11.

(REVISED COURSE)

BE EXTC VIII (Peu) Wiseless Network

RK-4773

(3 Hours)

2. Attempt any four questions from remaining six.

[Total Marks: 100

Q. 1.	a) What	is frequency reused in GSM? Explain	05		
2350000000		ain the concept of hidden exposed terminal in WLAN.	05		
	50	in the security aspect of Bluetooth.	05		
	d) Expla	ain various WLAN topologies.	05		
Q. 2.		ain forward link features of CDMA 2000 and also explain services provided by upper layers of CDMA 2000.	05 05 10 10 10 10 10 10 10		
		the block diagram and explain GSM architecture in detail ating all the interfaces.	10		
Q. 3.	a) Expla	nin Link budget analysis and requirements of Wireless	10		
		network connection establishment flow in Bluetooth and in Park, Hold, and Sniff mode in detail.	05 05 05 10 10 10 10 06 06 08 10		
Q. 4.	a) Draw	and explain WAP architecture in detail.	10		
	b) Expla	ain the following: i) Bluetooth protocol stack. ii) Bluetooth application.	10		
Q. 5.	a) Expla	nin logical channel hierarchy in GSM.	06		
	b) Expla	ain security aspect of GSM.	06		
	e) Expla	nin in detail Wireless sensor network.	08		
Q. 6.	a) Give the advantages, disadvantages, and applications of WAP.				
	b) Expla	ain the following: i) ZigBee technology. ii) WIMAX.	10		
Q. 7.	Compare and contrast the following:				
	a)	GSM and CDMA			
	b)	IS-95 and CDMA 2000			
	c)	CDMA 2000 and WCDMA			

7/8/2011

B.F. EXTC VIII (Pou) Flective II - Image Processing

21: 1st half.11-AM(m)

Con. 3061-11.

(REVISED COURSE)

RK-4770

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Answer any four out of remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Assume any suitable data if necessary.
- Answer the following questions:—

20

- (a) Is the Huffman code optimal? Prove with an example.
- (b) Justify 'Quality of picture depends on the number of pixels and gray levels'.
- (c) Explain slant transform.
- (d) Justify/ contradict 'For digital Image having salt and pepper noise, median filter is the best'.
- 2. (a) Explain the following Image Enhancement Techniques with application :-
 - 15

- (i) Intensity level slicing
- (ii) Range Compression
- (iii) Edge detection.
- (b) Compare between contrast stretching and histogram equalization.

5

3. (a) A 8 level image is given below :--

10

Image

Prepare the histogram of the given image. Perform Histogram equalization and draw New Histogram.

(b) A source emits 8 symbols with the probabilities given :—

10

Symbol	a1	a2	аЗ	a4	a5	a6	a7	a8
Probability	0-1	0-4	0.05	0.05	0-1	0.2	0.07	0.03

Obtain Huffman code and calculate entropy, average code word length and coding efficiency.

- (a) Name different types of image segmentation techniques. Explain the splitting and 10
 merging technique with the help of an example.
 - (b) Apply slant transform and DCT transform on the given image and compare the 10 result.

f(x,y) =	2	2	2	1
	2	4	4	2
	2	4	4	2
	2	2	2	2

Image

- (a) What is Hadamard Transform? Write a 4 × 4 Hadamard matrix and its application. 10 Is H(4) Orthogonal and Normalized.
 - (b) Apply Low and High Pass Spatial masks on the following image matrix. Prove 10 that High Pass = Original – Lowpass. Assume virtual Rows and Columns.

f(x,y) =	30	31	32
	33	120	30
	32	32	31

Image

(a) Compare :—

10

- (i) Lossy and Lossless compressions.
- (ii) Objective fidelity criteria and subjective fidelity criteria.
- (b) Explain segmentation based on discontinuity and segmentation based on 10 similarities.
- Write short notes on any four of the following: —

20

- (a) Haar Transform
- (b) Frequency domain filtering
- (c) Wiener Filtering
- (d) Spatial domain filtering
- (e) Connectivity of Pixels
- (f) Uniform and non-uniform sampling.

7/0/2011

BE EXTC VIII (Pw) Sective II - Vatellile Communication

Con. 3780-11.

(REVISED COURSE)

RK-4755

(3 Hours)

[Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining.
 - (3) Assume suitable data if necessary.
- Answer the following :-

20

- (a) Why satellite communication is considered as 'distance insensitive communication system'? Compare satellite communication system with optical fibre communication system.
- (b) At the input to a receiver, the received carrier power is 400 pwatts and the system noise temperature is 450 k. Calculate $\left(\frac{C}{N}\right)$ density ratio

in dBHz. Given that the bandwidth is 36 MHz, calculate $\left(\frac{C}{N}\right)$ in dB,

- (c) Define and explain the terms 'roll', 'pitch' and 'yaw' with respect to a satellite. Support your answer with neat sketches. What do you mean by 'Antenna Look Angles'.
- (d) Compare the major differences, advantages and disadvantages of FDMA and TDMA used in satellite communication.
- (a) Explain in detail various types of satellite orbits. How launching of geostationary satellites is achieved?
 - (b) Explain what is meant by orthogonal polarisation and the importance of this 4 in satellite communication.
 - (c) Describe the 'tracking, telemetry and command' subsystem of a satellite 8 communication system.
- (a) With a neat and labelled diagram, explain double reflector antennas and shaped 10 reflector system.
 - (b) Derive the expression for Carrier-to-Noise-Ratio $\left\lceil \frac{C}{N} \right\rceil$ of a satellite 10 communication link. Hence, solve the following:—
 In a satellite link, the propagation loss is 200 dB. Margins and other losses account for another 3 dB. The receiver $\frac{G}{T}$ is 11 dB and EIRP is 45 dBw. Calculate the received $\binom{C}{N}$ for a system bandwidth of 36 MHz.

- 4. (a) Describe the principles of operation of code division multiple access. What 10 effect do the unwanted signals have on the wanted signal?
 - (a) With the aid of a block schematic, explain various elements of an earth station. 10 Why is it desirable to place the low-noise amplifier of the antenna end of the feeder cable?
- (a) Explain in detail various ways of propagation impairment that affect transmission 10
 of satellite signals.
 - (b) What impact the earth eclipse of satellite has on satellite communication? 10 Explain in detail with the help of neat sketches.
- 6. (a) Explain in detail how electrical power requirement in a satellite is managed. 10 What are the different means of power supply are adopted?
 - (b) What are the main considerations in the design of an earth station? How 10 design of small earth station is different from that of large earth stations?
- Answer the following (any four):-
 - (a) Kepler's Laws of planetary motion
 - (b) Limits of visibility
 - (c) Intermodulation noise
 - (d) Single spot, Global spot and multiple spot beam antenna
 - (e) Frequency bands used for satellite communication.

20

was modificates

Con. 3030-11.

(REVISED COURSE)

RK-4752

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Make use of Z-Smith chart wherever necessary.
- (3) Assume suitable data if required.
- (4) Solve any four questions from remaining six questions.
- (a) Draw and explain in short, test set up to measure signal to noise ratio.
 (b) With neat diagram, define (i) power gain (ii) available power gain (iii) transducer
 - power gain (iv) transducer power gain in 50 Ω system, for two port amplifier.

 (c) What are the causes of low frequency poise and high frequency poise associated.
 - (c) What are the causes of low frequency noise and high frequency noise associated with the mixer?
 - (d) Define and explain with neat diagram noise correlation matrix for general noisy two port network.
- (a) What are different techniques to obtain power amplifier linearity? Draw and explain 10 feed-forward technique.
 - (b) Draw π and T equivalent configuration of CE bipolar transistor with noise sources. 10 Also give equations of mean square values of noise generator and noise power spectral density due to noise sources, in a narrow frequency interval Δf.
- 3. A GaAs FET is biased for minimum noise figure and has the following S-parameters and noise parameters at 4 GHz ($Z_0 = 50~\Omega$): $S_{11} = 0.6 \angle -60^\circ$, $S_{21} = 1.9 \angle 81^\circ$, $S_{12} = 0.05 \angle 26^\circ$, $S_{22} = 0.5 \angle -60^\circ$; $F_{min} = 1.6$ dB, $\Gamma_{opt} = 0.62 \angle 100^\circ$, $R_N = 20~\Omega$. For design purposes, assume the device is unilateral, and calculate the maximum error G_T resulting from this assumption. Then, using microstrip matching network, design an amplifier having a 2.0 dB noise figure with the maximum gain that is compatible with this noise figure.
- 4. Design microstrip matching network for generating port and terminating port for a FET transistor oscillator at 10 GHz. An inductor (L_G = 5 ηH) is placed in series with the gate to increase the positive feedback and thus increase further instability. The S-parameters of the transistor have been converted from the common source into the common gate configuration and are given by –

$$S = \begin{bmatrix} 2 \cdot 18 \angle -35^{\circ} & 1 \cdot 26 \angle 18^{\circ} \\ 2 \cdot 75 \angle 96^{\circ} & 0 \cdot 52 \angle 155^{\circ} \end{bmatrix}$$

- (a) Explain with neat sketch dielectric resonator coupled to a microstrip. Also draw it's equivalent circuit.
 - (b) For a balanced mixer using two diode and a 90° hybrid junction, derive an expression for I.F. output current.
- A GaAs MESFET has the following S-parameters measured with a 50 Ω resistance at V_{Ds} = 4 V, I_{DS} = 0.9 I_{DSS} at 9 GHz. Design the input and the output matching network for maximum power gain at 9 GHz, as shown in figure below, using lumped elements.

$$[S] = \begin{bmatrix} 0.55 \angle -150^{\circ} & 0.04 \angle & 20^{\circ} \\ 2.82 \angle & 180^{\circ} & 0.45 \angle -30^{\circ} \end{bmatrix}$$

Desired amplifier circuit.

- Write short notes on :-
 - (a) Power distributed amplifier
 - (b) Leeson's model for oscillator phase noise
 - (c) Balanced amplifier using 90° hybrid coupler.

7

i