The marks obtained by students in a college are normally distributed with

college. What is the probability that at least one of them would have scored

more than 75 marks.

Test whether the matrix $A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ is diagonalizable.

mean 65 and variance 25. If 3 students are selected at random from this

- (c) Functions f and g are defined as follows:—
 f: R → R, g: R → R, f(x) = 2x + 3, g(x) = 3x 4
 find fog, f⁻¹, g⁻¹ and verify that (fog)⁻¹ = g⁻¹ of⁻¹
- 5. (a) Verify Cayley-Hamilton thm. for $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ and hence find A^{-1} .
 - (b) Draw the Hasse diagram for L = { 1, 2, 3, 5, 6, 10, 15, 30 } and let the relation R be 'is divisible by'. Determine whether it is lattice.
 - (c) Sample of two types of electric bulb & were tested for length of life and the following data were obtained.

No of	Samples	Type I 8	Type II 7
Mean (in ho	of the samples urs)	1134	1024
Stand (in ho	ard deviation urs)	35	40

Test at 5% level of significance whether the difference in the sample means is significant.

- 6. (a) Evaluate $\int_{c}^{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{z^{2} + 3z + 2} dz$ where C is (i) |z| < 1 (ii) |z| < 2
 - (b) A random variable X has the probability function $f(x) = \frac{4x}{81} (9 x^2)$, $0 \le x \le 3$. Find first four moments about origin and about mean.
 - (c) If $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, find the characteristic roots and characteristic vectors at $A^3 + 1$

- 7. (a) Using Residue Theorem evaluate $\int_{c}^{c} \frac{(z+4)^2}{z^4+5z^3+6z^2} dz$, where C is the circle 6
 - (b) It is known that the probability of an item produced by a certain machine will be defective is 0-05. If the produced items are sent to the market in the packets of 20, find the number of packets containing (i) at least (ii) exactly (iii) at most 2 defective items in a consignment of 1000 packets using poisson approximation to the Binomial distribution.
 - (c) If X_1 has mean 5 and variance 5, X_2 has mean -2 and variance 3. 8 If X_1 and X_2 are independent random variables, find

most incomes to belong our discussion of it into account the time.

- (i) E $(x_1 + x_2)$, $V(x_1 + x_2)$
- (ii) E $(2x_1 + 3x_2 5)$, V $(2x_1 + 3x_2 5)$.

Con. 3508-11.

S. F. ETRX TV (Rev)
Electronic + Electrical Heasuring
Insterments + Machine
RK-1857 RK-1875

(3 Hours)

[Total Marks: 100

(2) Attempt any four questions from the remaining six questions. (3) Assume suitable data if necessary. (4) Figures to the right indicate marks.	
1.A) Compare 'true rms meter' and 'average responding meter'.	05
B) Why Kelvin's double bridge is superior to wheatstone's bridge in low resistance measurement.	05
C) Explain significance of back emf in D.C. motors.	05
D) Explain gear wheel method used for frequency measurement.	05
A) What are the different methods of converting analog to digital signal? Explain successive approximation type ADC.	10
B) Explain various performance parameters of digital voltmeters.	10
 A) Explain construction and working of digital frequency meter with the help of neat labeled diagram. 	10
B) Write a short note on component testing using CRO.	10
4.A) Explain requirements of a good laboratory type of signal generator.	10
B) Explain measurement of capacitance using Schering Bridge with the help of vector diagram	10
5 A) Explain the need of starter for induction motors. What are the various types of starters used for induction motors? Explain any one in details.	10
B) Draw and explain front panel of dual trace oscilloscope.	10
6. A) State the various types of stepper motors. Explain hybrid stepper motor in details.	10
B) Derive torque equation for moving iron meters.	10
7. Write a short note on (any three).	20
A) megger. B) Speed control of dc series motors. C) Ohmmeter. D) Weston type frequency meter.	

20 : 1st half.11-AM(n)

Con. 3631-11.

SE ETRX IV CROW Basic & Analog & Digital Communication Systems RK-1860

20

			(3 Hours)	[Total Marks: 100	D
N.	В.:		Question No. 1 is compulsory. Attempt any four questions out of remaining six questions	S.	
1,	Ans	(a) (b) (c)	the following:— Distinguish between: Narrow Band and Wide Band FM. Classify and explain to various noises that affect commun Derive an expression for an AM signal. Explain Time Division Multiplexing.	ication.)
2.	(a) (b)		npare the following amplitude modulated systems :— DSB-FC, DSB-SC, SSB, ISB. Italian basic block diagram of communication system in deta	12 il. 8	
3.		With	the help of neat block diagram explain the working of TR w the block diagram of PCM system and explain each blow the waveforms.	F Receiver. 10	
4.	1610441	How Drav	lain PAM and PWM generation with the help of block diagram is PAM demodulated? withe block diagram and waveforms of Adaptive Delta Moduetail. What are the advantages of this modulator over delta	lator and explain 10	
5.	Me Fil	rece	lain with the help of block diagram and waveforms superheiver. tch the circuit and phasor diagram of a phase discriminator as a FM demodulator.		
6.	(a)	((i	lain the following terms :— (i) Signal to noise ratio (ii) Noise factor iii) Noise figure iv) Equivalent noise temperature.	10	
	(b)	Drav (i (i	w the following line codes :— (i) Unipolar NRZ (ii) Unipolar RZ (iii) Polar NRZ (iv) Polar RZ (v) A. M. I. (Bipolar).	10	

7. Write short notes on following:-

- (a) Vestigial sideband
- (b) AGC in radio receiver
- (c) High level plate Modulator
- (d) Frequency division multiplexing.

Con. 2946-11.

SE ETRX TV (Rew) Electronic Circuit Analysis Perign

RK-1854

(3 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any four from remaining questions.
- (3) Assume suitable data if necessary.
- Attempt any four questions from the following:—

20

- (a) State and prove Barkhausen criterion for sustained oscillations.
- (b) Write short notes on CASCODE amplifier.
- (c) Explain the use of swamping resistor in Differential Amplifier.
- (d) Explain design steps for Heat sinks.

(e) For the following circuit, determine corner frequencies and bandwidth of the

- Design two stage RC coupled CE amplifier to provide A_V = 3000, V_O = 2.5 V and S = 8.
 Determine R_{in}, R_O, V_O of the amplifier you have designed.
- Design class AB power amplifier for following specifications:—
 P_O = 12 W, load resistance = 15 ohms, V_{CC} = 12 V,
 Calculate circuit efficiency, draw DC load line.
 Calculate power dissipation under zero signal conditions.

(a) Determine lower cutoff frequency for amplifier shown in the figure:—

$$C_G = 0.01 \mu F$$

 $R_{sig} = 10 K\Omega$
 $I_{DSS} = 8 mA$
 $C_C = 0.5 \mu F$
 $R_G = 1 M\Omega$
 $V_P = -4 V$

$$C_S = 2 \mu F$$
 $R_D = 4.7 K\Omega$
 $R_S = 1 K\Omega$
 $R_L = 2.2 K\Omega$
 $V_{DD} = 20 V$
 $V_{d} = \infty$

[TURN OVER

(b) Explain Miller effect in amplifiers.

6

5. For the amplifier shown in the figure determine :-A Feedback factor β, A_{vv}, Identify feedback type 20

B
$$R_{in}$$
, R_{inf}
C R_{o} , R_{of}
RC, = 3 K, RC_2 = 500 Ω , $R' = R_S$ = 1.2 K Ω

$$RC_2 = 50 \Omega$$
, $h_{ie} = 1.1 K$, $h_{fe} = 50$, $V_{GC} = 15 V$.

Draw Equivalent circuit without feedback.

- (a) Derive the expression of differential gain, common mode gain, CMRR for dual input balanced output differential amplifier.
 - (b) Derive the expression of fß and fT.

10

- 10 (a) State and explain Wein bridge oscillator? Derive expression of its frequency.
 - (b) Explain in detail one, two, three pole amplifiers. Give necessary derivations. 10

DBEC, DATA SHEET

0.59° C/mW	0.59	,			50 KΩ		2.5		2600 µU	\$600		7 mA	0	200°C	300 mW	30		30	30		(typical)
0.59°C/mW	0.59	U	2 mW/°C		50 KD		9		3000 hD	3000		2 mA	U	175°C	300 mW	80		20	20		. 1
g ye		200	Derate above 25°C		2	0/15	-Vr Volts		al)	8 (typical)		lost	2.X.	Т, тах.	P₄ max. @25°C	Votes max.	10x.	V _{po} max. Volts	Vois max.		
	1									1								- 1			nel JFET
						2000000										Carried Control			1	25 12	
0-0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.5	1-0	1.6	2.5	3.0	4-0	пA	Ibs min. mA	****			E	100 n	
0.0	-	0.0	0-0	0.2	8.0	1.7	2.7	3.3	4.0	9.7	5.4	6.0	7.0	V	Ibs typ. mA		1		T	250 D	
0.0	0.5	=	2.0	2.2	ė	4.2	5.4	5.1	8.9	9.7	8.3	0.6	10	mA	IDs max. mA	O-F-C/mw	In l	× ×	304 0	556 CE	
4-0	3.5 4	3.0	2.5	2.4	2.0	1-6	1.2	1.0	9.0	9.0	0.4	0.2	0.0	*	-Vos volts	1	10-1	3.2 ×	25µ 8	14 K S	
		-							SOL	ERIST	IRACT	MUTUAL CHARACTERISTICS	MUTUA	-JFET	BFW 11-JFET	0-4°C/mw	F-01	1.5 ×	18µ 0	2.7 K D	
																θja		lire	hoe	hie	i
***	1	6.0	90	40	330	240		450	290	0	20	125	9		50	45	20	0.25	0.1	0.25	- 1
1	Į	1	1		45	1	32	65	1	5	23	100	i	-	1	30	50	0.25	0.5	0.225	
1	1	6.0	260	24	220	125		220	180	'n	115	125	9	,	20	4.0	20	0.25	0.1	0.25	
0.03	35	6.0	08	2	06	50		280	90	0	V٦	200	9		65	90	10	9.0	0.7	5.0	
0.3	4.0	1.2	15	_	09	33		110	20	0	(4)	150	00	· ·	1	40	20	0.1	4.0	30.0	
0.4	3.5	1.5	25	-	75	25		100	20	v	ત	200	9	0		20	60	0.1	2.0	50.0	
0.7	1.5	8:1	20	_	50	15		70	20	0	5	200	7	_	76 90	9	100	1-1	15.0	115-5	
Do/M			тах.	E.	ryp.	min.	×.	max.	typ.	in	min	0.			ú	- 2	d.c.		Amps	Watts	- 4
above	0,00	7 48	h _{fe}		Signal	Small		gain	current	D.C. 8		7 2000	Vago	Verx	VCER VC	V CEO	VCDO	VCE	lemax @ 25°C	Pdmax @ 25°C	

Con. 3048-11.

RK-1863

		(3 Hours) [Total Marks : 1	00
N	.B. :	(1) Question No. 1 is compulsory.	
		(2) Solve any four from Q. No. 2 to Q. No. 7.	
		(3) Assume suitable data if necessary.	
-	Siena?		
1.	11	7. The second se	20
	(b)	Compare Moore and Mealy models.	
	(c)	Explain Universal Shift Register for four bits.	
	(d)	Memory Organisation and Operation.	
2.	(a)	Explain VHDL statements.	10
	(b)	What are modeling styles in VHDL and write code for full adder using component	10
		modeling.	
3.	(a)	Write VHDL code for multiplexer IC 74151	10
	(b)	Write a code Behavioral description of simple floating point encoder.	10
4.	(a)	Explain state reduction and state Assignments techniques.	40
4.			10
	(b)	Design sequential circuit for detecting and overlaping sequence 1101 using J.K./F.F.	10
5.	(a)	Design a asynchronous counter using J.K./F.F. which runs through the sequences.	10
		74-5-7-6-2-3	
	(b)	Write VHDL code for two digit BCD counter.	10
6.	(a)	Explain Internal organization of RAM	10
	(b)	Explain XC9500 Architecture.	10
7.	(a)		10
	(b)		10
		(i) Hazards	
		(ii) Race Condition Stability.	