SA 1st half 131

Con. 3636-12.

(REVISED COURSE)

A. VLSI Design

(3 Hours) [Total Marks: 100

GN-7436

BE | ETRX [UII (Rev) 15/5/2012

1	N.B.:	(2)	Question No. 1 is compulsory. Attempt any four out of remaining six questions.	
		(3)	Assume any suitable data whenever required and justify the same.	
1.	b) Ex North c) If delay d) D	xplain the vof ar	metal migration in interconnect. n programming techniques of EEPROM using hot electron and Fovemission. width and length of the interconnect is reduced by 30%, then the propagate interconnect will increase or decrease, by how much %? and explain manchester carry out circuit using carry kill bit. Also draw 4-information for the propagate of the connect will be a supplementary of the connect will be a su	5 ation 5
2.	buffer (J _{AL} = is 500 rise/fa	r tha = 0.5ι) μm all tir	would be the conductor width of power and ground wires to a50 MHz c t drives 100 pF of on-chip load to satisfy the metal-migration considers mA/μm)? What is the ground bounce with chosen conductor size? The mofrom both the power and ground pads and the supply voltage is 5 volts. The properties of the conductor size of the conductor of the power and ground pads and the supply voltage is 5 volts. The properties of the conductor	ation dule
3	its can b) Ex	rry ec cplair	nd explain the drawback with ripple carry adder. Explain 4-bit CLA adder quations, logical network and writs its Verilog description. I how ESD (electro-static discharge) affect the MOSFET. Give and expection circuits.	10
4.	which b) Dr	n dete aw 4	nd explain the maximum and minimum frequency calculation of clock si ermine the data transfer rate through cascade system. X 4 pseudo-nMOS ROM array circuitry having stored following data. 010, 1100, 0101. Also list the no. of address pins, data pins and word lines.	10
5.			n the need of frequency compensation in CMOS operational amplifier. and explain single phase clock system and explain its drawback.	10 10
6.			various technique of clock generation. Discuss 'H' tree clock distribution. cross talk in IC's? Explain various methods to reduce it.	10 10
7.	a) Lb) Rc) C	ow peliab arry s	ower design consideration. ility issues in CMOS circuits. save adder. capacitor amplifier.	20

BE | ETRX | UIII (Rev) 19/5/2012 Robotics & Automotion

Con. 3833-12.

N.B.: (1) Question No. 1 is compulsory.

(REVISED COURSE)

GN-7550

(3 Hours)

(2) Attempt any four questions of remaining six questions.

[Total Marks: 100

	(3) Assume suitable data wherever necessary.	
1)	(a)What is fixed and flexible automation (b)Define Kinematic Parameter with the help of suitable diagram. (c)Give any 3 points ,why Inverse Kinematics is Unique ?	5 10 5
2)	(a)Describe DH algorithm for a 3 DOF articulated Robot .Show all the steps with reference to the figure .(b)Compare and Contrast Direct Kinematics and Inverse Kinematics .	12
3)	(a)Find the TCV W(q) for 4-axis cylindrical coordinate robot (b)Define DWE of any robot arm Explain with their formula	12
4)	(a) What is template matching technique of a gray level image and their application to robot vision.(b) What are the moments of an image? How are the moments use in the shape analysis of objects	12
5)	(a)The coordinates of the point 'P' on the body are given by {1,2,3} Rotate the body about the z-axis by 30° and then about the y-axis by 30°. Find the new coordinates of the point 'p' w.r.t the fixed frame. (b)Compare area and Stroke of a Robot,	15
6)	(a)Write a PLC ladder logic programme for 4 junction traffic light. (b)Explain the composite rotation matrix (CRM) algorithm.	12
7)	(a) Explain PNP motion trajectory in detail. (b) Explain the different types of communication ports used in PLC.	15 5

BEL SOMP | VIII (Rev.) 24/5/2012 ETRX DSP Processors & Architecture GN-7547

[Total Marks: 100

Con. 3977-12.

N.B.: i) Question No. 1 is compulsory.

ii) Attempt any four Questions from the remaining six Questions.

(3 Hours)

1	a)	Explain how a higher throughput is obtained using VLIW architecture? Give an example of a DSP that has VLIW architecture.	5
	b)	What is the function of interrupt mask register (IMR) and interrupt flag register (IFR) of C5X?	5
	c)	Explain the pipeline operation of TMS320C6X.	5
	d)	Explain the term high memory access bandwidth in relation with P-DSPs. How the same can be	£,
		obtained in P-DSPs?	
2	a)	Compare the features of TMS320C5X and TMS320C54XX.	10
	b)	Draw the functional diagram of ARAU unit in C5X and explain the function of various	10
		registers/units used in the same.	
3.	a)	What are the various functional units of C54X CPU. Explain in detail the function of compare,	10
		select and store unit (CSSU) and exponent encoder.	
	b)	What are the on-chip peripherals of CSX DSP?	10
4.	a)	What are the various P-DSP families and their applications? Discuss the various factors to be	10
		considered while choosing a DSP Processor.	
	b)	Explain the addressing modes of C54X with the help of examples.	10
r		What is the self-of intermediation in a DCD design.	10
5.	a)	What is the role of interrupt pins in a DSP device? Are these the only means of interrupting a program? How do you prevent a signal on interrupt pin	10
		from interrupting a time critical program being executed by the DSP?	
	b)	Draw the diagram showing functional architecture of analog devices ADSP 21XX family and state	10
	υ _j	its features.	
6.	a)	Explain the implementation of FIR and IIR filters using C54X processor.	10
	b)	Draw the internal architecture of TMS 320C6X processor. Explain the functional units and their	10
		operation.	
7.	a)	Explain the working of AIC with neat diagram.	10
	b) .	What is the use of circular buffers? Write assembly language syntax in C5X for circular addressing	10
		mode? Which is the register associated with circular addressing?	

VT-F.H.I-xam, April -12-150

N.B.: (1) Question No. 1 is compulsory.

Con. 3980-12.

(2) Attempt any four questions from remaining six questions.

BELETRX VIII (Rev) 24/5/2012 Advanced Networking Technologies

(REVISED COURSE)

(3 Hours)

Total Marks: 100

	(;	3) Draw neat diagram wherever necessary.	
i	(a) (b) (c) (d)	Explain TCP/IP Protocol Suite. Compare SONET layers with OSI or the internet layer. Explain ATM cell format in detail. What is remote monitoring? Explain benefits of remote monitoring.	5 5 5 5
2.	(a) (b)		10 10
3.	10 10	With the help of neat sketch explain DWDM. What do you mean by Access layer design? Explain.	10 10
4.	(a) (b)	Draw and explain frame format of frame relay and explain address feilds. How it provides congestion control and quality of service? Explain the steps for completing the Access-Network Design in detail.	10
5.	(a) (b)	Explain in detail Repeaters, Routers, Bridges and Switches. Explain in detail packet filtering and also mention its advantages and disadvantages.	10 10
6.	100 13	With respect to network management explain the following :- (i) Documentation (ii) OAM & P.	10
	(b)	Explain in detail network security treats.	10
7.	(te short note on the following: a) IEEE 802·11 b) Subnetting and Supernetting c) Network Security Safeguard d) SONET Hardware.	20

		2915/2012	
\	/	BE(EPRX) Embedded System & R Programming (REVISED COURSE) - GN-8267 (3 Hours) [Total Marks: 10	lead tinn
Co	n 47	(REVISED COURSE) - GN-8267	1 Coo P M
00		(3 Hours) [Total Marks : 10	0 70 3.00 (1111)
	N.	 B.: (1) Question No. 1 is compulsory. (2) Answer any four of the remaining six questions. (3) Draw neat diagram and assume suitable data wherever required. 	
1.	(b)	What is H/W and S/W co-design. Explain functions of different registers available in ARM7. Differentiate between Mutex, Lock () and Spinlock () inter process 5 communications techniques with suitable example.	5
	(d)	•	5
2.	(a)	Design an automatic Tea and Coffee vending machine based on FSM (Finite State Machine) Model for the following requirement the tea/coffee vending is initiated by user inserting a 5 rupee coin. After inserting the coin the user can either select coffee or tea or press cancel to cancel the order and take back the coin.	7
	(c)	Draw and explain Petrinet model. Name different problems of using Semaphore, also explain priority inversion problem and its solutions.	3 10
3.	(a) (b)	Explain different Exceptions which occur in MSP430.	5 5 10
	(c)	Describe clock circuit and registers used in control it of MSP430.	10
4.	(a) (b)	Define Process, Threads and Tasks also explain various status of task. 10 What is shared data problem and mentions various methods to resolve it. (Give relevant example).	10
5.	(a)	xplain Processor modes of ARM7, also specify different branch instruction	10
	(b)	used to exchange branch from ARM mode to Thumb mode. Explain different addressing modes of ARM7TDMI.	10
6.	(a)	Three Task with ids T1, T2, T3 with estimated time 10, 5, 7 ms and priority 1, 3, 2 resp. enters the ready Queue together. A new process T4 with estimate time 2 ms and priority 0 enters the ready queue after 2 ms. Schedule the tasks using preemptive SJF (shortest job first) and Priority based scheduling algorith Calculate execution time, waiting time, turnaround time, mention which is the best scheduling algorithm for a given problem. (0 is the highest priority).	5
	(b)	Explain data structures Queue, Circular Queue, Linked list, Array.	10
7.	Writ	e short notes on any four : (a) Explain System on chip (Soc) (b) Spiral model used in EDLC (c) Periodic and Aperiodic Rate Monotonic Scheduling (d) Black box and White box testing (e) SPI and SCI port.	20