BETETRX [VIII (0) 2415/13 mechatronics

P4-RT-Exam.-Feb.-13-3-95 Con. 8961-13.

(OLD COURSE)

GS-2473

(3 Hours)

[Total Marks: 100

N.	B.	•	(1	Question	No.	1	is	compulsory
			•					

- (2) Attempt any four questions out of remaining six questions.
- (3) Assume suitable data wherever required but clearly state and justify it.
- (4) Figures to the right indicate full marks.
- 1. Solve the following:

20

- (a) Explain different types of pump systems.
- (b) What is range sensor? And give its applications.
- (c) What is microsensor? Give the basic fabrication process steps of microsensor.
- (d) Explain mechatronics system with its key elements.
- 2. (a) Explain the construction of permanent magnet stepper motors. Derive motor 10 equations and draw the block diagram model of PM stepper motor.
 - (b) A force of cantilever beam is to be measured, draw the system diagram and block 10 diagram model. Explain hardware / software needed to implement hardware in loop of this system.
- 3. (a) Draw the ladder rungs to represent –

10

- (i) Two switches are normally open and both have to be closed for a motor to operate
- (ii) Either of two normally open, switches have to be closed for a coil to be energized and operate an actuatore
- (iii) A motor is switched ON by a spring return push button start switch and the motor remains ON until another spring return push button stop switch is prossed.
- (b) Explain in detail mechatronics design process with its block diagram, operation and 10 importance.
- 4. (a) Explain various properties of sensors.

5

- (b) Write the fundamental laws, which are used in most mechatronics applications 5 involved rigid body system.
- (c) What is adaptive control system, compare the performance of different types of 10 adaptive control systems.

[TURN OVER

5.	(a)	Explain the following terms:— (i) Hydraulic resistance	10
		(ii) Hydraulic capacitance	
		(iii) Pneumatic intertance	
		(iv) Thermal capacitance	
		(v) Damper model.	
	(b)	Explain the basic function of various component of Data Acquisition and Control systems.	5
	(c)	What are different applications of fiber optic devices in mechatronics?	5
6.	(a)	Explain the block diagram of PLC with its selection criteria.	10
	(b)	Write the steps involved in the installation of I/O cards and software.	5
	(c)	Explain brushless DC motor.	5
7.	Wri	te short notes on the following:	20
		(a) Components of Data Acquisition and Control System	
		(b) Hardware-in-loop simulation	
		(c) Control system design techniques.	

ws-Con-2013-44 Con. 8621-13.

(OLD COURSE)

GS-2194

(3 Hours)

[Total Marks: 100

Instructions to the candidates:	Instructions	to	the	candi	idates:
---------------------------------	--------------	----	-----	-------	---------

- 1) Question number 1 is compulsory
- 2) Attempt any 4 questions from remaining 6 questions
- 3) Draw necessary figures or sketches wherever required
- Q1 (a): Differentiate between fixed and flexible automation.

(20)

- (b): Explain various kinematic parameters with neat diagram.
- (c): Differentiate between Direct Kinematics, Inverse Kinematics.
- (d): What is trajectory planning?
- Q2 (a): Explain various technical specifications of the robots.

(20)

- (b): Explain steps of the DH Algorithm in Direct Kinematics of 3 axis robot.
- Q3 (a): Why the Inverse Kinematics solutions are not unique? State and explain various properties of Inverse Kinematics solutions. (20)
 - (b): Explain Gravity Fed Part Feeder, Conveyors & Corousels with neat diagrams.
- Q4 (a): With respect to pick and place trajectory, explain pick-up point, lift-off point, set-down point and place point. State where gross motion and fine motion observed on this trajectory.

 (20)
 - (b): Explain various template matching techniques.
- Q5 (a): Explain Generalized Voronoi Diagram (GVD) and the configuration space methods of gross motion planning. (20)
 - (b): Explain the effect of moment of inertia on the dynamic performance of the robot arm.
- Q6 (a): Explain the Bounded Deviation Algorithm (BDA) for obtaining a straight line motion.

(20)

- (b): Explain the perspective transformation and inverse perspective transformation.
- Q7: Write short notes on:

(20)

- (a): Euler number and its use in image processing.
- (b): Tool Configuration Vector (TCV) and its significance in IK solutions
- (c): Screw transformation
- (d): Applications of the robots

B.E VIII old ETRX Data Camm 2 N/W

8 : 1st half.13-shilpa(i)

Con. 7818-13.

(OLD COURSE)

GS-1924

			(3 Hours)		[Total Marks: 100)
N.E		 (1) Question No. 1 is compulso (2) Attempt any four questions (3) Figures to the right indicate (4) Assume suitable data where 	out of rem full mark	S.	stions.	
1.	(b)	What are the transmission impace Compare stop and wait flow conditions and I Distinguish between ATM and I Explain CSMA / CD protocol.	ntrol with	sliding window		
2.		Explain ADSL in detail. Sketch HDLC frame structure. (i) Piggy backing (ii) Data Transfer modes	(iii)	ect to it explain Types of frames Bit stuffing.		1(
3.		Draw and explain ATM cell form Explain Bellman Ford algorithm		example.		10
4.		Discuss datagram packet switch Compare synchronous TDM with carrier standards.	Ū	TDM. Describe	briefly about digital	10
5.		Describe common channel sign Explain ISDN with the help of :- (i) Architecture and		SS7 signalling		10
6.		Give the physical layer specificati and IEEE 802.3 100 Mbps. Explain OSI model giving function			EE 802.3 10 Mbps	10
7.		te short notes on any three of the (a) Congestion control (b) Blocking in circuit switched (c) Flooding in packet switched (d) IEEE 802.5 token ring prote	networks d network			20

86

1st Half-13-Mina - (c)-27

Con. 7989-13.

B.E ETRX VIII (014)

Power Electronics GS-1708

(OLD COURSE)

(3 Hours)

Total Marks: 100

20

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from the remaining questions.
 - (3) Illustrate answers with sketches whenever required.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data if necessary.
- 1. Answer any four:—
 - (a) Draw and explain V-I characteristics of UJT. Explain negative resistance region.
 - (b) State and explain different triggering circuits.
 - (c) Explain need of cooling of a power device in details.
 - (d) Explain the constant torque region and constant power region in IM torque-speed characteristics.
 - (e) Draw and explain stepup chopper.
 - (f) Explain the function of feedback diodes used in antiparallel with transistors in inverters. Draw and explain Bridge Inverter.
- 2. (a) What is synchronization? Draw and explain half wave controlled rectifier with 10 resistive load triggered using UJT relaxation oscillator.
 - (b) Explain the ac power control circuit. Which two modes of TRIAC are used in 10 the ac power control circuit? Explain.
- 3. (a) Draw and explain series inverter circuit. State and explain its limitation and how 10 it is modified.
 - (b) Draw and explain auxiliary commutated single phase bridge inverter using some 10 suitable voltage and current waveforms.
- 4. (a) Draw and explain load commutated chopper. Explain how it is different from 10 voltage commutated chopper.
 - (b) With the help of voltage and current waveforms, explain the working of first quadrant 10 chopper. Give the completed time domain analysis of class A chopper.
- 5. (a) Explain the performance parameter of single phase fully controlled bridge rectifier 10 feeding with active load. Draw the necessary waveforms.
 - (b) Draw the neat diagram for 3-phase full converter feeding highly inductive load. 10 Assuming continuous and ripple free output current. Draw the output voltage waveforms for $\alpha = 30$ degree measured from natural angle delay i.e. $\pi/6$ clearly show the conducting sequence of devices.

TURN OVER

Con.	7989-	GS-1	708-	.13
	, , ,		, V V	· .A. • ✓ •

- (a) Explain the rotor resistance control of IM. Draw and explain Speed-Torque and 10 Speed-rotor current curves of a wound rotor motor. (b) Explain the Harmonic loads and causes. 10 Write short notes on any four:— 20 (a) dv/dt rating, di/dt rating and its protection circuit.
 - v/f control of Induction motor.
 - (c) Effect of source inductance on output voltage of FWCR.
 - (d) Sine Triangle PWM method.
 - (e) Second Break down in case of power transistor.