BEI EXTCIVILI (Old) Optical Fiber Communication 13/05/13 P3-upq-Feb.-13KL-65 A4 E Con. 7828-13. (OLD COURSE) GS-1990 | | (3 Hours) | [Total Marks: 10 | 00 | |------------|---|--------------------|----------| | (| Question No. 1 is compulsory. Answer any four out of remaining six questions. Assume suitable data whenever necessary. | | | | | Explain spontaneous emission and stimulated emission. Describe three types of optical fibers, for each type give typical conditional diameters, sketch refractive index profile. | ore and cladding | 5 | | (c)
(d) | Explain total internal reflection in an optical fiber. Describe the importance of OTDR for optical fiber communic | ation. | 5 | | | Derive an expression for N.A., acceptance angle cone and solid index fiber. | | | | (b) | Explain intramodal and intermodal dispersion in optical fibers. How affect the transmission B.W. of optical fibers? | v does dispersion | 10 | | | Draw the block diagram of optical heterodyne receiver and optical receiver and explain the phenomenon of phase locking between the and incoming signals. | e local oscillator | | | (b) | Explain the working of LED with a neat labelled block diagran | n. | 10 | | (b) | What do you understand by double heterostructure? State its State the difference between LED and LASER. Explain the techniques for measurements of attenuation, disperindex and N.A. of fiber. | | 5
10 | | (b) | Describe quantum efficiency and responsivity of a photodete expression for the responsivity of an intrinsic photodetector. Explain with neat sketches fiber slicing techniques. Enlist the desiral of a good fiber connector. | | | | (b) | Explain any one fiber fabrication process with a neat diagram. Find the core radius necessary for single mode operation at 820 n fiber with $n_1 = 1.482$ and $n_2 = 1.474$. What is the numerical aperturacceptance angle of this fiber? Also calculate the correspondi | e and maximum | 10
10 | | | ite short notes on any four .— (a) Link power budget (b) Optical receiver and noise sources (c) Wave propagation in GIF (d) Multiplexing of optical signal (e) PIN diode. | 2 | 20 |