18: 1st half.13-AM(x) Con. 8523-13.

BB-6991

Con. 8523-13.		
	(3 Hours)	[Total Marks: 80
N.B.: (1) Question No. 1 (2) Attempt any thr (3) All questions ca	ee questions from the remaining.	
Q1. (a)Explain the three operatir	ng windows in optical communication.	(20)
(b)Explain Frequency chirping	g in detail.	
(c) What is soliton?		
(d)What is effective area?		
Q2. (a) Explain the gain process	in a SOA and state its application.	(10)
	omena responsible for signal degradation	
as the light wave propagat	tes through an optical fiber.	(10)
Q3(a) An optical amplifier is oper	rating at 1.3 wavelength with input	
power 0.5mW and noise fig	gure of 4dB. What is the receiver bandwidth	
if SNR at the output is 30dl		(08)
	aser generation and discuss Vertical	
Cavity surface Emitting lase		(12)
	ator designed for operation at waveleng	,
	lectrode of 25 µm. determine the voltage	
	en that the electro optic coefficient for li	
$30.8 \times 10^{12} \text{m} \text{v}^{-2}$ and its Refracti	ive index is 2.1 at 1.3µm.	(10)
(b) What are the different net	work topologies? Explain the performan	ce of
star architecture.		(10)
Q5 (a). Explain any one optical	fiber network topology.	(10)
(b). What are different types of	nonlinearity? Explain any two.	(10)
Q6. Write short notes on (1) Be	eam splitters (2) Optica! modulators (3)p	hotonic crystal fibers
(4) optical mems.		(20)

MECEXOTO) CGS 2415/13 Elective I: VISI Emixed Sig. CKt Esystem.

ws-Con-2013-20 Con. 8778-13.

(3 Hours)

BB-7012

[Total Marks: 80

- N. B.: 1. Attempt any four questions from six questions.
 - 2. Figures to right indicate full marks.
 - 3. Assume suitable data if necessary.

Q1.	Design two stage operational amplifier(OTA) for the following specifications	
	Av > 3000V/V, $VDD = 2.5V$, $VSS = -2.5V$, phase margin =60°	
	Gain bandwidth product (GBP) = 5MHz, CL(load capacitance) = 10pF,	
	Slew Rate > 10V/ μ s, Vout range = ± 2 V, Power dissipation (Pdiss) ≤ 2 mW.	
	Input common mode gain (ICMR) = -1 to $2V$.	
ţ	Assume the channel length is to be 1 µm	
	Use results of above problem and design compensation circuitry so that the RHP zero is moved from the RHP to the LHP and placed on top of the output pole $p2$.	
Q2. (a)	Explain the working of any CMOS logic circuits with MOS load.	(10)
(b)	Explain the different types of comparator used in PLL. Justify why Phase	(10)
	frequency Detector (PFD) is preferred in charged pump PLL.	(10)
Q3. (a)	Explain why the mobile charge density cannot drop to exactly zero at any	(10)
	point along the channel . What happens beyond the pinch -off point in MOS transistor?	
(b)	Explain the switched capacitive integrator circuit in detail.	
Q4. (a)	A simple sampling switching circuit consists of MOS switch and capacitor .If	(10)
•	applied input voltage is level changed from 0 to 1V(i. e logic 0 to logic	
	1), calculate Vout as the function of time. (assume VDD= 1V, λ =0)	
(b)	Explain the importance of analog design in the digital world	(10)
Q5. (a)	Explain analog design rules and layout techniques used in analog design flow.	
(b)	Explain the working of CMOS D.latch and triggered Flip-flop.	(10)
Q6.	Write a short note on (Any two)	(20)
(a)	Power management and packaging issues in AMS design.	
(b)	Active current mirror circuit	
(c)	Dynamic of CMOS circuits	

46

M. E EXTC SEM I (REV) Stætistical Signal Analysis

24 : 1st half.13-AM(v) Con. 7881-13.

BB-6976 -

(3 Hours)

[Total Marks: 80

N.B.: (1) Attempt any four questions out of six.

- (2) Assume suitable data, if necessary and justify the same.
- 1. (a) The received signal in an AM system is $Y(t) = A(t) \cos(2\pi fct + \theta) + N(t)$, where 10 N(t) is a band-limited white noise process with spectral density

$$SN(f) = \begin{cases} \frac{No}{2} & |f \pm fc| < W \\ 0 & elsewhere \end{cases}$$

Find the signal to noise ratio of recovered signal.

(b) State and prove CENTRAL LIMIT THEOREM.

10

- (a) A space craft has 100000 components (n → ∞). The probability of any one component being defective is 2 × 10⁻⁵ (p → 0). The mission will be in danger if five or more components become defective. Find the probability of such a event.
 - (b) A fair coin is tossed twice and let the random variable X represent the number of heads. Find $F_{\upsilon}(x)$.
 - (c) Consider the Random process:

10

$$Y(t) = (-1)^{N(t)}$$

Where N(t) is a Poisson process with rate λ . Y(t) starts at Y(0) = 1 and switches back and forth from +1 to -1 at Random Poisson time Ti. Find the mean and Auto correlation of Y(t) and show that Y(t) is not wide-sense stationary process.

3. (a) Show that the Weiner Process is a Gaussian Random Process.

10

- (b) A communication system consists of n components, each of which will, 10 independently function with probability p. The total system will be able to operate effectively if at least one half of it's component function.
 - (i) For what values of p is a 5-component system more likely to operate effectively than a 3 component system?
 - (ii) In general when is a (2k + 1) component system better than a (2k 1) component system?
- 4. (a) Consider a Markov chain with transition probability Matrix $p = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$, 10

where 0

Suppose that initial distribution is $p(0) = [\alpha 1 - \alpha]$. Find the :-

- (i) Probability distribution after one step.
- (ii) Probability distribution after two steps.
- (iii) Probability distribution after infinite number of steps.
- (b) State and explain Little's formula.

10

[TURN OVER

Con. 7881-BB-6976-13.

2

5. (a) Let X_n be a sequence of iid Gaussian random variables with zero mean and variance 6². Find the joint pdf and autocovariance of the corresponding sum process at times n₁ and n₂.
(b) State and prove that Chapman-Kolmogorov equation.
6. (a) Write a detailed note on Kalman filter.
(b) Explain M / M / 1 Queue
5

(c) Write a note on power spectral density and it's properties.

ME (ExTC) SEM I CRU) may 2VI) 08p fits application 2015/13

28 ; 1st half.13-AM(z)

Con. 8743-13.

BB-6994

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- Solve any three questions from the remaining.
- (3) Assume suitable data wherever required but justify the same.
- (a) Obtain the expression for output y(n) in terms of x(n) for the multirate system shown below:

- (b) What are advantages of DSP processors in relation to general purpose processors?
- (c) Explain zero input limit cycles and overflow limit cycles.
- (d) Obtain polyphase decomposition of IIR system with transfer functions

$$H(z) = \frac{1 - 4z^{-1}}{1 + 5z^{-1}}$$

- 2. (a) Determine DFT (8 point) for a continious time signal $x(t) = \sin(2\pi ft)$ with 10 f = 50 Hz using DIF - FFT algorithm.
 - (b) How can energy density spectrum be determined for a discrete time signal? 10
- 3. (a) Design a Butterworth Low Pass Filter for following specifications:— 10
 - (i) Pass band gain required = 0.9
 - (ii) Frequency upto which passband gain must remain more or less steady = 100 rad / sec
 - (iii) Gain in attenuation band = 0.4
 - (iv) Frequency from which attenuation must start = 200 rad / sec.
 - (b) Determine the digital transfer function H(z) using impulse invariant 10 transformation technique for analog system function

$$H(s) = \frac{1}{(s+0.5)(s^2+0.5s+2)}$$

- 4. (a) Draw and explain architecture of sixth generation TMS 320 C6X processor. 10
 - (b) Explain biomedical applications of DSP.

10

- 5. (a) Discuss the applications of DSP in speech processing.(b) How can sampling rate be converted by a rational factor M/L.
 - (c) The output of A/D convertor is applied to a digital filter with system function 10

$$H(z) = \frac{0.5z}{z - 0.5}$$

Find the output noise power from digital filter, when the input signal is quantized to have eight bits.

6. (a) The desired response of low pass filter is —

$$Hd(e^{jw}) = \begin{cases} e^{-j3w} - \frac{3\pi}{4} \le w \le \frac{3\pi}{4} \end{cases}$$

Determine $H(e^{jw})$ for M = 7 using Hamming window.

(b) Determine the frequency resolution of Bartlett Welch and Blackman Tukey 10 methods of power spectrum estimates for a quality factor Q = 10. Assume that overlap in Welch method is 50% and length of sample sequence is 1000.