BE EXTC VIII (REU) Advanced microwave 21/-114 Engineers

QP Code: MV-19072

(3 Hours) / 100 - 200 [Total Marks: 100

- N.B. (1) Question no. 1 is compulsory.
 - (2) Attempt any four questions out of remaining six question.
 - (3) Assume suitable data wherever necessary.
- 1. (a) Define signal to noise ratio and noise figure with help of a noisy network. Explain 5 test set up to measure signal to noise ratio.
 - (b) Prove that scattering matrix is symmetrical and reciprocal.
 - (c) Explain unilateral figure of merit.
 - (d) Explain the terms conversion loss and Isolation with reference to mixec.
- 2. (a) Consider two power BJT amplifiers used in circuit configuration shown below 10 having following specifications:

Assume that operating frequency is 1 GHz and input power is 5.5dBm. Specify correct BJT amplifiers that must be used at each stage to obtain 29.5 dBm output power. Assume each two way divider / combiner has 0.5 dB insertion loss.

- (b) Discuss amplifier linearization methods.
- 3. (a) For an ideal transformer with turns ratio $n = n_1 / n_2$ prove that the scattering metrix is: $S = \begin{bmatrix} \frac{n^2 1}{n^2 + 1} & \frac{2n}{n^2 + 1} \\ \frac{2n}{n^2 + 1} & \frac{1 n^2}{n^2 + 1} \end{bmatrix}$
 - (b) Define and explain noise correlation matrix for general noisy two port network. 10 What is congruence transformation?

TURN OVER

10

4. Design a transistor oscillator at 6 GHz using an FET in CS configuration driving a 50 Ω 20 load on drain side. The S-parameters at 50 Ω are

$$S = \begin{bmatrix} 0.9 \angle 150 & 0.2 \angle -15 \\ 2.6 \angle 50 & 0.5 \angle 105 \end{bmatrix}$$

Calculae and plot output stability circle for $|\Gamma_{\rm IN}| >> 1$. Choose $|\Gamma_{\rm T}| >> 1$. Design load and terminating networks.

- 5. (a) Discuss various mixer topologies. Compare performance of various topologies. 10
 - (b) Discuss gerneralised single ended mixer design apporach. Give design 10 considerations.
- 6. (a) For a two port network the ABCD matrix is given as:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0.5 & j1.6 \\ j1.6 & 0.5 \end{bmatrix}$$

Find scattering matrix if $Zo = 50 \Omega$. Find condition of reciprocity.

- (b) Discuss generator tuning networks for microwave oscillators.
- 7. (a) A GaAs FET is biased for minimum noise figure and has following S parameters 15 and noise parameters at 4 GHz ($Zo = 50 \Omega$).

$$S = \begin{bmatrix} 0.6\angle - 60 & 0.05\angle 26 \\ 1.9\angle 81 & 0.5\angle - 60 \end{bmatrix}$$

Fmin = 1.6dB $\Gamma_{opt} = 0.62 \angle 100 R_N = 20\Omega$.

Design an amplifier with 2 dB noise figure and maximum gain compatible with this noise figure. Assume device is unilateral

(b) Consider the amplifier circuit shown below:

The input and output matching netwoks are to be designed using open circuited stubs for $\Gamma_{\rm S} = 0.5 \ \angle 120$ and $\Gamma_{\rm I} = 0.4 \ \angle 90$. Use Smith Chart.

B.E. ExTL som VIII (Pun) M-2014 SUB:-EL-II I.P. QP Code: MV-19153

(3 Hours) [Total Marks: 100]

Q1. Is compulsory

Solve any 4 from remaining

- State and explain significance of convolution property of 2D Fourier Transform (5 marks) Q1 A.
- Justify/contradict all image compression techniques are invertible. (5 marks)
- Lossy and lossless compression
- Why zig-zag scanning preferred in JPEG standard?
- What is Hadamard transform? Write a 4 X 4 Hadamard matrix and it's applications. Is H(4) orthogonal? (10 marks)
- Q2 B Explain segmentation based on discontinuity and segmentation based on similarities. (10 marks)
- Q3. A. 8 level image is given below

(10 marks)

4	6	0	3	7
2	1	5	0	3
4	2	7	0	7
1	5	4	6	0
4	7	5	14	1

Prepare histogram of given image

Perform histogram equalization and draw new histogram

Compute 2D DFT of 4 X 4 gray scale image given below and then compute inverse 2D, DFT of transform coefficients. The image f(x, y) is given by (10 marks)

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

QP Code: MV-19153

Q.4 A Apply Slant transform and DCT transform on the given image and compare the result. (10 marks)

$$F(x,y)=$$

2	2	2	1
2	4	4	2
2	4	4	2
2	2	2	2

Q4 B Explain Homomorphic filter.

(10 marks)

Q5 A Write notes on Hotelling transform.

(10 marks)

Q5 B. Calculate entropy and coding redundancy for symbols given in table using Huffman codes.

(10 marks)

Symbol	al	a2	a3	a4	a5	a6	a7	a8
Probability	0.1	0.4	0.05	0.05	0.1	0.2	0.07	0.03

Q6 A Explain image enhancement in frequency domain. (10 marks)

Q6 B Explain JPEG 2000 image compression standard. (10 marks)

Q7 Write notes on

(20 marks)

- 1. Connectivity of pixels
- 2. Image restoration.
- 3. Wiener filter.

BE EXTC RISEM MI (Ren) 22/m-2017 SUB-EL-II EP. TNM.

QP Code: MV-19147

			(3 Hours) [Total Ma	arks: 100
N.]	(2) Atte	estion No. 1 is compulsory. empt any four questions from remaining questions. ke suitable assumptions wherever necessary and clearly justify the	hem.
1.	(b) (c)	State to Explain	is Remote Monitoring? Explain RMON1 MIB. the goals of network management. in SNMPv1 PDU format. the services offered by CMISE.	 5 5 5 5
2.			are different network management standards with their key feature be OSI network management model.	res. 10 10
3.	Wit	h respe (a) (b) (c) (d) (e) (f)	ct to network management, explain following in detail:- Manager Management agent MIB SMI ASN.1 BER.	2 4 4 4 4
4.			be TMN conceptual model. Id explain SNMPv2 commands.	10 10
5.		these c	he additional capabilities of RMON2 over RMON1 and explain apabilities can be used for an enterprise network management. be the SNMPv3 user-based security model.	how 10 10
6.			n the functional requirements of NMS design. In the five types of applications defined by SNMPv3.	10 10
7.	Writ	(a)	notes on (any two):- ATM reference model defined by ATM Forum. Comparision between SNMP and CMIS/CMIP. SNMP proxy server.	20

B.E. - Extc- Som - VIII 28/3/114 OFC

QP Code : MV-19218

(3 Hours) [Total Marks: 100

	N.	 B.: (1) Question No. 1 is compulsory. (2) Attempt any four questions from remaining six questions. (3) Assume suitable data whenever necessary and justify the same. 	
1.	(a)	Compare dark current with optical current semiconductor.	5
	(b)	Explain direct and Indirect band gap semiconductor.	5
	(c)	What do you mean by optical waveguide? How it is different from Electrical waveguide?	5
	(d)	Explain Bandwidth distance product.	5
2.	(a)	Derive the expression for Numerical Aperture of a step-index fiber. What will happen to Numerical Aperture if cladding is removed?	5
	(b)	Compare step index and graded index fiber.	5
	(c)	What do you understand by intramodal dispersion? Derive the expression for material dispersion.	10
3.	(a)	Explain the significance of V-number. Derive the expression for number of guided modes in graded index fiber.	10
	(b)	Explain following terms:	5
		(i) Total internal reflection	
		(ii) Acceptance angle	
		(iii) Critical angle	
	•	(iv) Quantum efficiency	
		(v) Responsivity	
	(c)	State the difference between LED and LASER.	5
4.	(a)	Explain Modified Chemical Vapour Deposition (MCVD) method of fiber fabrication?	10
	(b)	Explain with neat sketches fiber splicing techniques. Enlist the desirable requirements of a good connector.	10
5.	(a)	A photodiode has a quantum efficiency of 65% when a photon of energy	10

(i) At what wavelength is the photodiode operating.

of 1.5×10^{-19} J are incident upon it.

(ii) Calculate the incident optical power required to obtain photo current of 2.5 μA when the photodiode is operating as above.

[TURN OVER

QP Code: MV-19218

2

	(b) Explain the various factors responsible for optical signal attenuation and dispersion.	10					
6.	(a) With the help of receiver configuration circuit diagram, explain the working of optical receiver. Also derive the expression for output.						
	(b) Explain all aspects of link power budget.	. 10					
8.	Write short notes on: (any four) (i) Linearly polarized modes	20					
	(ii) OTDR						
	(iii) WDM						
	(iv) Compare PIN and APD diode						
	(v) Optical amplitiers						

B.E. Eptc sem VIII UREN M-2014 545-- WN' 03/06/14

QP Code: MV-19390

			•	(3 Hours)		[Total Marks	: 10
Ŋ	I.B.	(2)		compulsory. questions from rem data if necessary, wi		S.	
	(b) (c)	Expla: What	in RAKE receiver in various states in is the 'hidden' and are wireless is sen	n Bluetooth. 'exposed' node in W	VLAN?		5 5 5
2.	` /	Give t	technical difference tetwork, channel b		2000 and WCDMA Modulation, mode	A with respect to the of operation, source overhead.	
3.	• /	-	\sim	lysis and requirements hm. Why is CSMA-			10 10
4.		(i) (ii) The IE modul subcar sub car is 20 N What rate if	lation (OFDM). 48 rriers for pilot ton nnel has a symbol of MHz. Find the ban is a user symbol ration by ansmitted symbol ransmitted symbol	y aspects. uses a 64 sub chann subcarriers are use es are used for sync ate of 250 kilo symb dwidth of a subchan ate? If 16-QAM mod	hronization and 12 ols per second. The nel. What is modul dulation is used, what is rate of 3/4? If the	are reserved. Each occupied bandwidth ation efficiency? nat is the user data guard time between	•
5.	` /	*	in WAP architectu a neat block diagr	re in detail. am for UMTS archit	tecture. Explain all	the interfaces.	10 10
6.		impro Descr	vements.	vireless sensor netw		chieves performance factor influencing	10 10
7.	Wri	ite shor (a) (b) (c)	UWB Technolo	ogy gy			20