SEM- III ETRX (CBSGS) MEMS Technology.

24/5/16

Q. P. Code: 731501

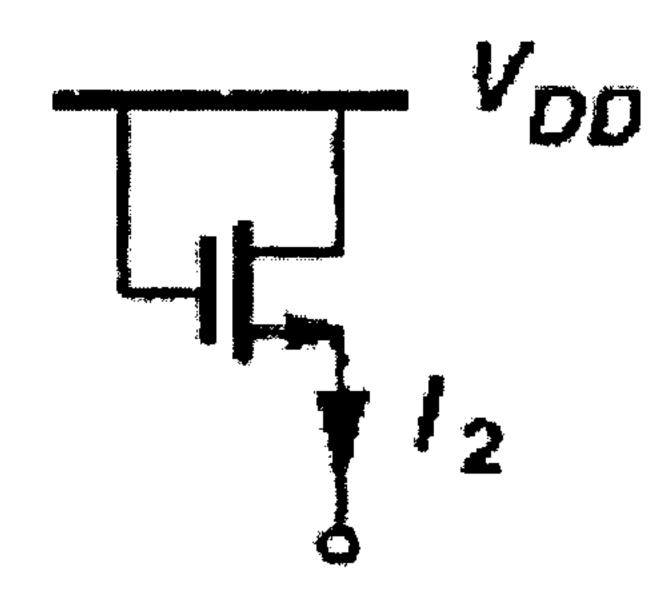
3 Hours

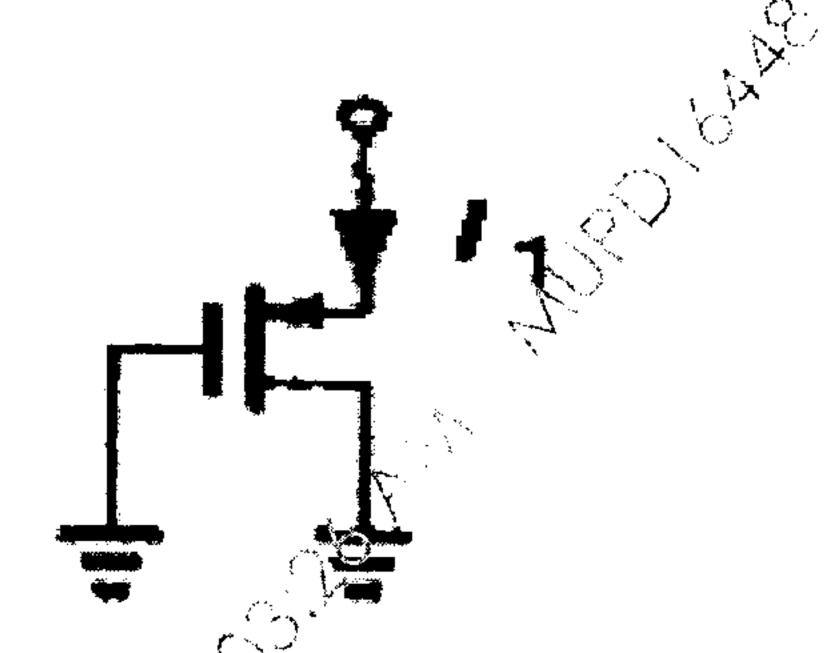
Max Marks: 80

20

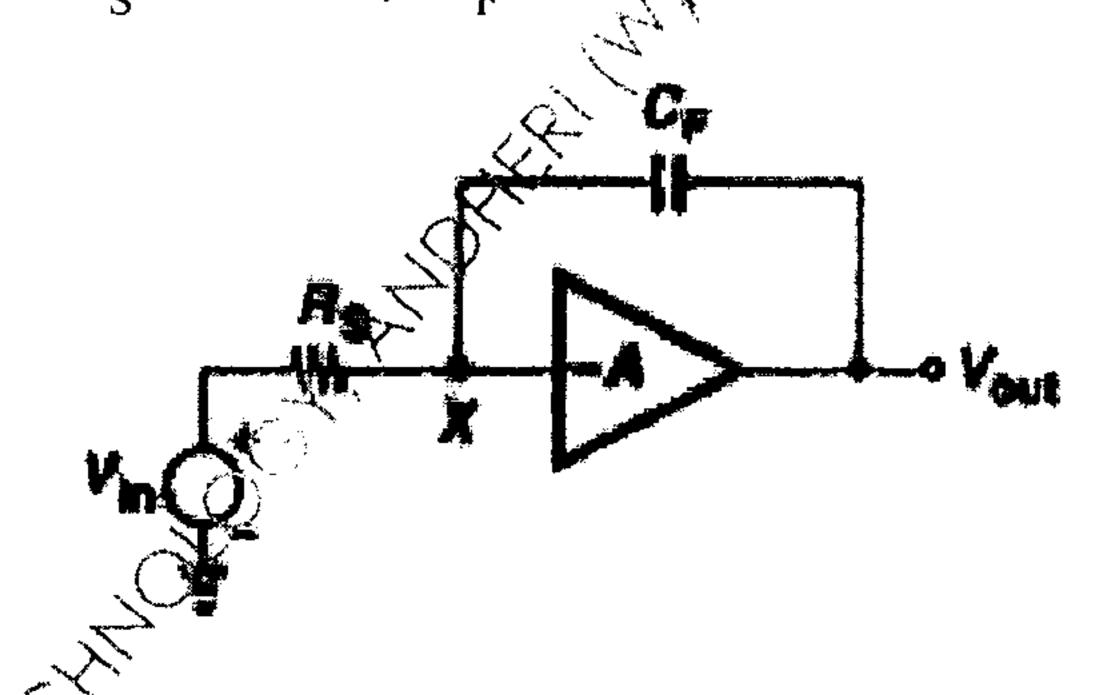
1	1.	В
יו	ч.	D

- 1) Q. No. 1 is compulsory.
- 2) Attempt any three out of remaining questions.
- 3) Assume any suitable data wherever required but justify the same.
- 1 a Give few examples of MEMS device which are characterized by sensors and 20 actuators.
 - b Explain the sacrificial layer and its role in fabrication of MEMS devices
 - c What are the characteristics of Micro-heater?
 - d In case of photolithography, Compare the two types of photo-resist used
- 2 a Discuss the process of photolithography. Mention the types of photolithography 10 suitable for at least two MEMS devices with justification.
 - b Discuss selection of material based on applications. Support your answer by considering suitable example.
- 3 a A 30 μm thick membrane is needed for a pressure sensor application. Calculate the size of the mask opening W needed for the V grocve if the full wafer thickness is 600 μm using an-isotropic (Tan 54.74°) etching below the silicon <100> surface.
 - b Explain Dry etching & Wet etching in fabrication process of MEMS devices.
- 4 a Describe the representative process flow for fabricating the ink jet printer head 10 by Hewlett-Packard. Also explain the operating principle of this MEMS device in detail.
 - b Differentiate between bulk and surface micromachining for fabrication of MEMS 10 devices with suitable example
- 5 a State various Chemical Vapor Deposition Techniques. Explain in brief the 10 techniques of Chemical Vapor Deposition for MEMS device fabrication.
 - b Explain transduction pertaining to microfilm strain gauge. State the factors that 10 lead to thin film stress
- 6 Write a short note on (any three)
 - a Photolitinography(Compare major types of exposure system)
 - b Anodic bonding
 - c Reliability of MEMs devices.
 - d Applications of MEMS in Biomedical Instrumentation

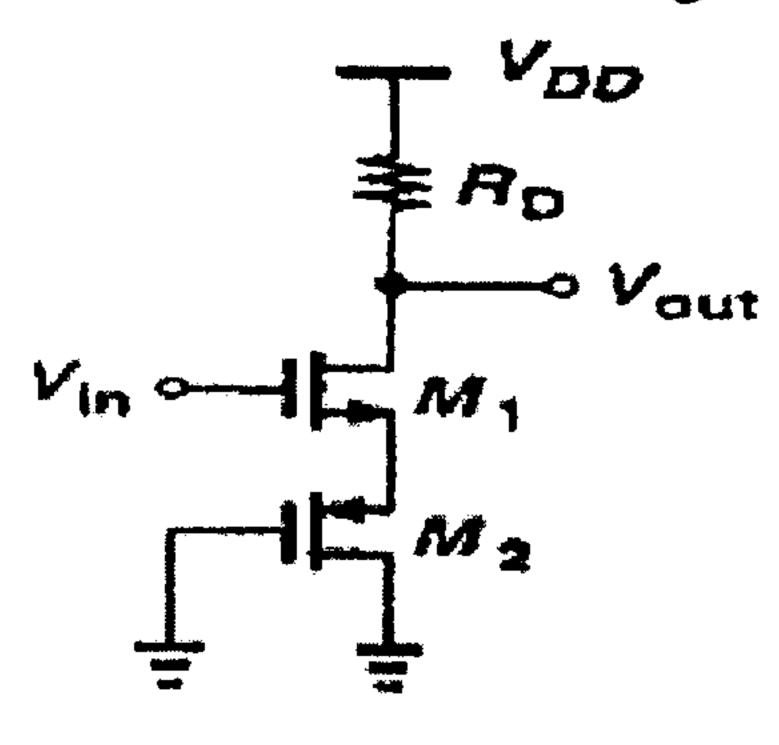

Q.P. Code: 719702


(3 Hours)

Total Marks: 80


N.B.: (1) Question ONE is compulsory.

- (2) Solve any THREE out of remaining questions.
- (3) Draw neat and clean diagrams.
- (4) Assume suitable data if required.
- 1. (a) Will the following circuits work as current sources? Give the correct reason for your answer.


- (b) List down the performance parameters of VCO and explain trade off between them.
- (c) Calculate the pole associated with the node X shown in the following figure. Assume $R_s = 1K\Omega$, $C_F = 0.1pF$ and A = 10.


- (d) Draw and explain the floor plan for a possible mixed signal chip. 5
- 2. (a) Show the op-amp based implementation of temperature independent 10 bandgap reference and various issues involved thereof.
 - (b) For common source stage with diode connected load, if the variation of $\eta = (g_{mb}/g_m)$ with the output voltage is neglected then prove that the gain is independent of bias currents and voltages.

2

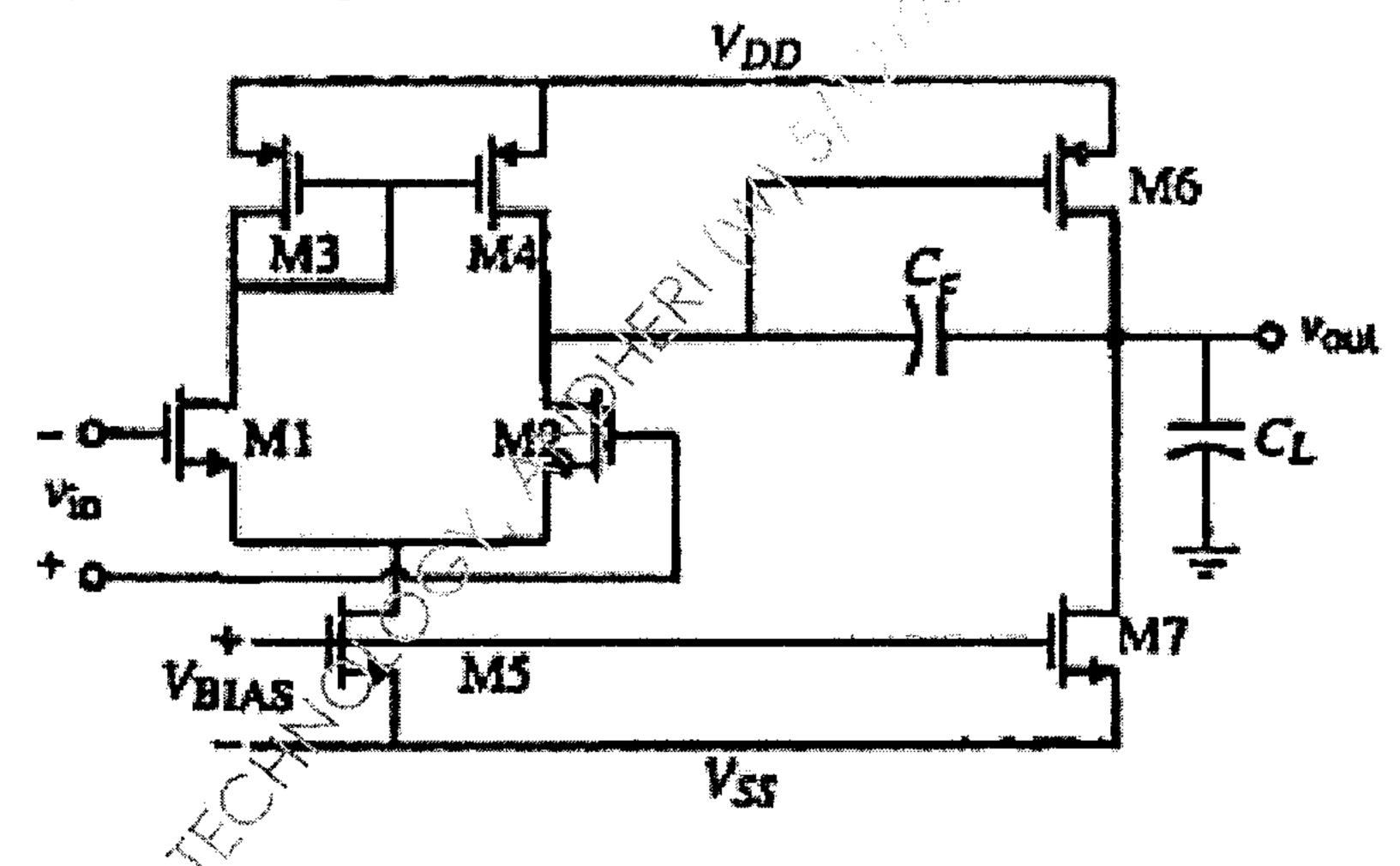
(c) Assuming $\lambda = \gamma = 0$, calculate the small signal gain of the circuit shown: 5

- 3. (a) The following circuit shown in Figure uses a resistor rather than a current source to define a tail current of 1mA. Assume $(W/L)_{1,2} = 25/0.5$, $\mu_n C_{ox} = 50 \ \mu\text{A/V}^2$, $V_{TH} = 0.6 \ \text{V}$, $\lambda = \gamma = 0 \ \text{and} \ V_{DD} = 3 \ \text{V}$.
 - (a) What is the required input CM for which Rss sustains 0.5V?
 - (b) Calculate R_D for a differential gain of §.

- (b) Explain the concept of switched capacitor circuit. Draw and explain discrete 10 time integrator along with the output waveform.
- 4. (a) With the use of small signal behaviour, prove that for differential pair 10 the magnitude of differential gain is equal to $g_m R_D$ regardless of how the inputs are applied.
 - (b) What is the need of compensating operational amplifiers? Explain the compensation of two stage operational amplifiers?
 - Derive an expression for the input referred noise voltage of common source stage.

Q.P. Code: 719702

3


5. (a) Design two stage Operational Transconductance Amplifier (OTA) similar 1 to that shown in the figure to meet the following specifications with a phase margin of 60°:

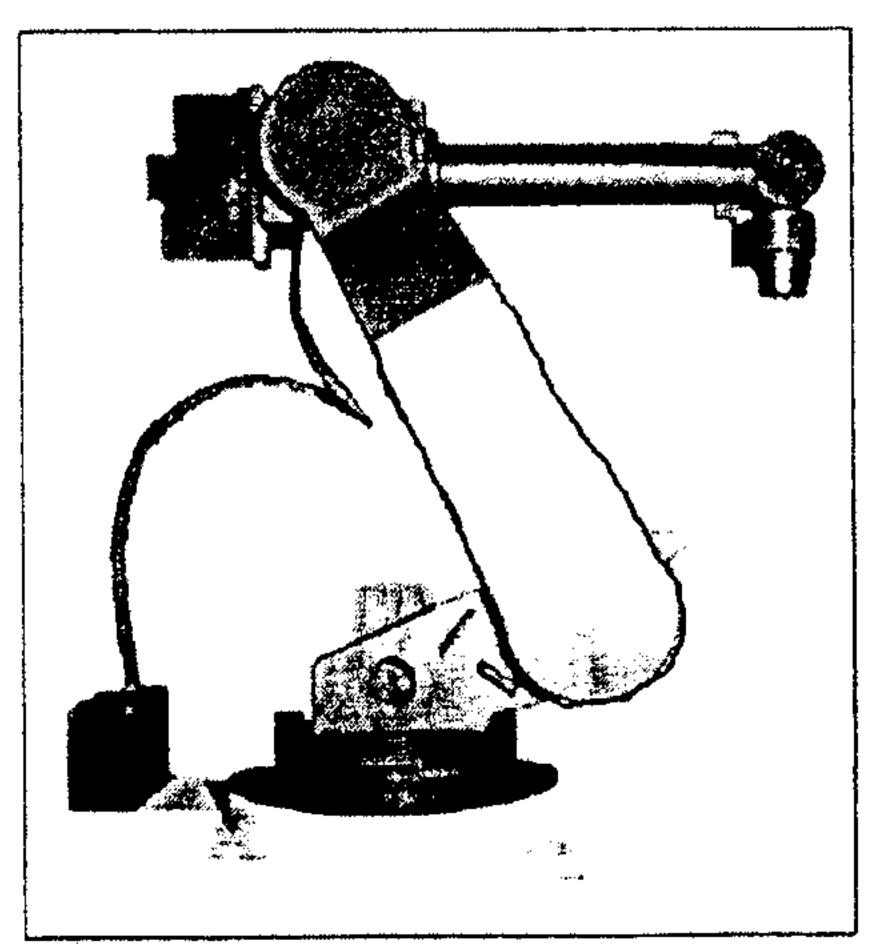
$$\begin{array}{lll} A_{V} > 5000 \text{ V/V} & V_{DD} = 2.5 \text{ V} & V_{SS} = -2.5 \text{ V} \\ \text{Gain Bandwidth (GB)} = 10 \text{MHz} & C_{L} = 10 \text{pF} \\ \text{Slew Rate (SR)} > 10 \text{ V/}\mu\text{s} & V_{out} \text{ range } = \pm 2.5 \text{ V} \\ \text{ICMR} = -1 \text{ to } 2 \text{ V} & P_{diss} \leq 2 \text{ mW} \end{array}$$

Use the following table for material and device parameters. Assume $C_{\rm ox} = 2.47 \ {\rm fF}/{\mu}{\rm m}^2$.

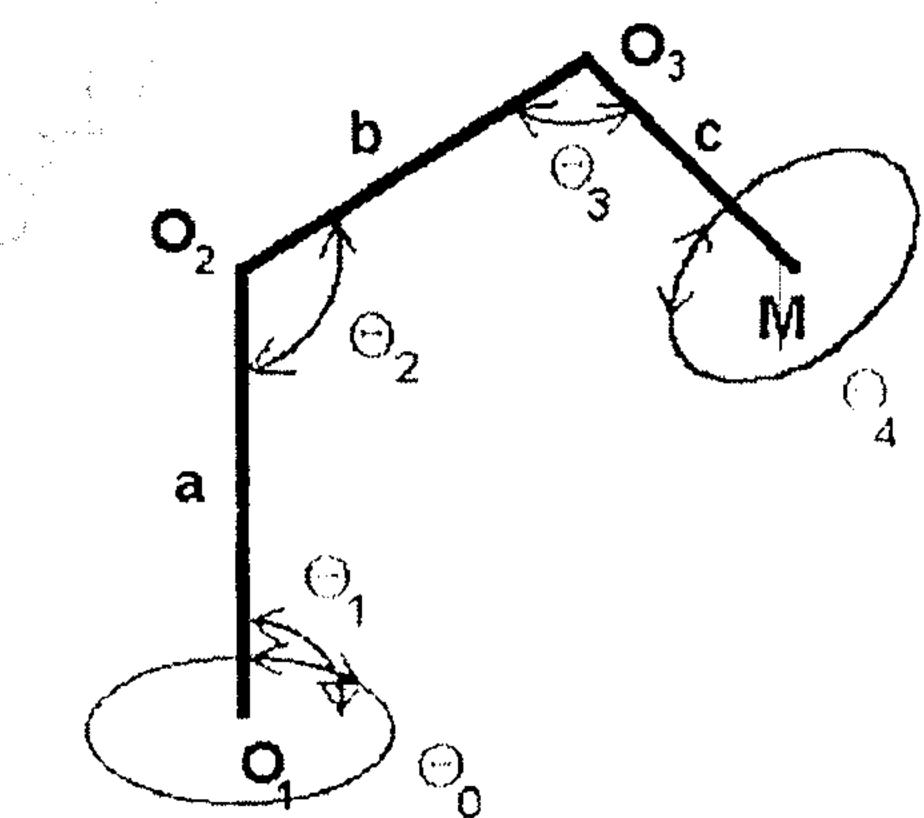
Parameter	n - channel	p - channel	Unit
$ m V_{TO}$	0.7 ± 0.15	-0.7 ± 0.15	V
K'	110	50	$\mu A/V^2$
λ	0.04	0.05	V^{-1}

Verify that the voltage gain and power dissipation given in the specifications are met by the designed circuit.

- (b) Explain charge-pump PLL.
- 6. (a) Compare the performance of various op-amp topologies. 5
 - (b) Explain the input-output characteristics of phase detector (PD) circuit.
 - (c) Explain the concept of clock feedthrough.
 - (d) Compare between full-custom and semi-custom design.

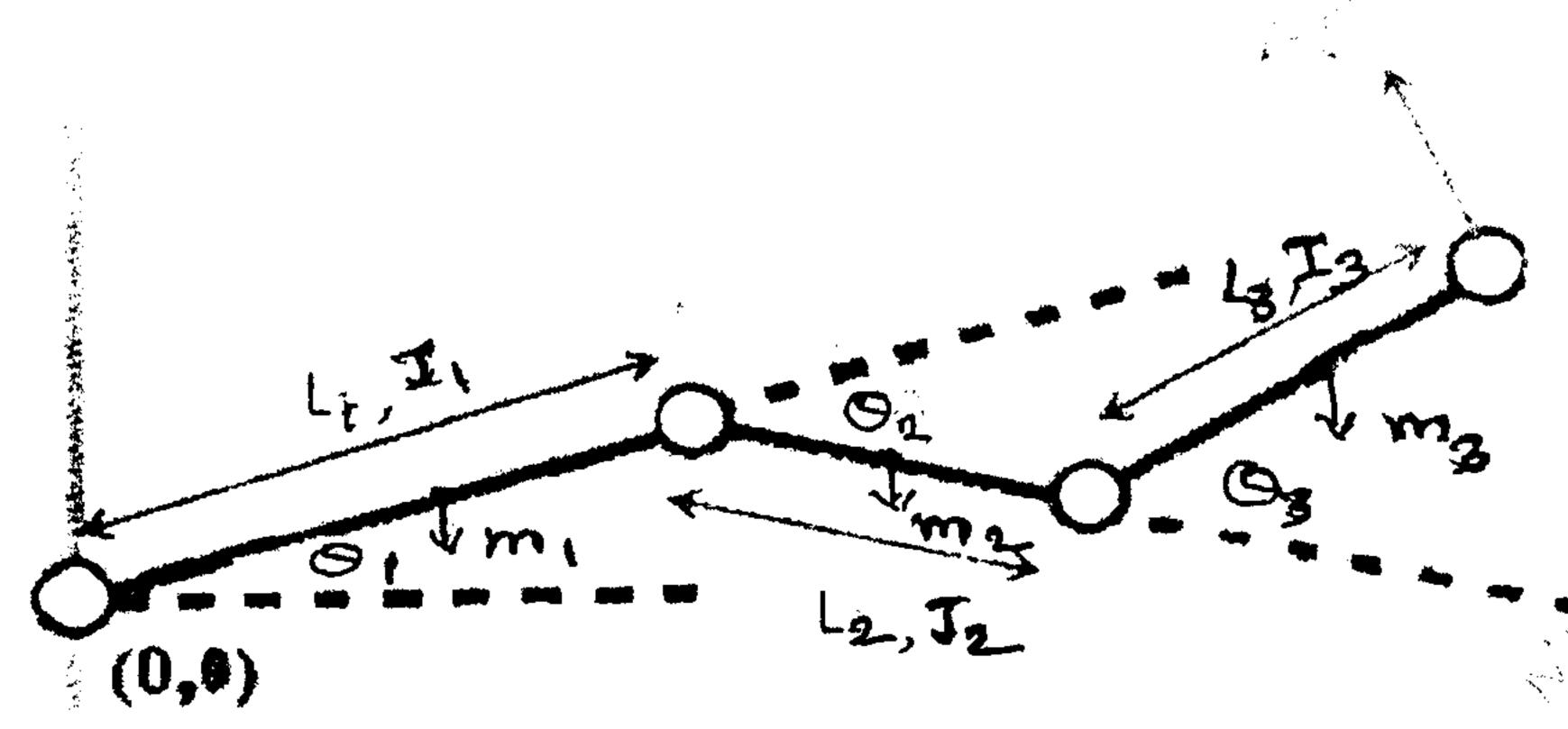

Robotics

QP CODE: 732400


(3 Hours)

[Total Marks: 80]

- N.B.: 1. Question No. 1 is compulsory.
 - 2. Attempt any three questions from the remaining five questions.
 - 3. Assume suitable data if necessary.
 - 4. Figures to the right indicate full marks.
- Q.1. Answer following questions in brief.
 - a Draw the approximate workspace for the following robot. Assume the (05) dimensions of the base and other parts of the structure of the robot are as shown below.



- b A point P(7,3,1)^T is attached to the frame F and is subjected to following (05) transformations. Find the coordinates of the point relative to reference frame at the conclusion of transformations.
 - i Rotation of 90° about the z-axis
 - ii Followed by a rotation of 90° about y-axis
 - iii Followed by a translation Of [4,-3,7]
- c What is potential function? How it is used for navigation of robot? (05)
- d What is thresholding? Explain with suitable example. (05)
- Q.2. a A 3-DOF robot arm has been designed for applying paint on flat walls, as (15) shown below.

- Assign coordinate frame as necessary based on the D-H representation.
- Write parameter table.

- Write all A matrices.
- Find the ^UT_H matrix.
- b Define the following terms (05)
 - Euler angles
 - Articulated joints
- Q.3. a Derive the equations of motion for the system shown below: (08)

- b A camera is attached to the hand frame T_H of a robot as given. The corresponding inverse Jacobian of the robot at this location is also given. The robot makes a differential motion described as $D = [0.05 \ 0 \ -0.1 \ 0 \ 0.1 \ 0.03]^T$.
 - i Find which joints must make a differential motion, and by how much, in order to create the indicated differential motion
 - ii Find the change in the Hand frame
 - iii Find the new location of the camera after the differential motion
 - iv Find how much the differential motion should have been instead, if measured relative to Frame TH, to move the robot to the same location as in part (iii)

$$T_{H} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad J^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & -0.2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Q.4. a Explain Tangent Bug algorithm and compare it with Bug2 algorithm. (10)
 - b Explain Brushfire algorithm. Discuss local minima problem. (10)
- Q.5. a What is GYD? Explain sensor-based construction of GVD. (10)
 - b Explain How you will generate Cartesian-space trajectories. Give simple (10) example.
- Q.6. Write short notes on
 - a Forward and Inverse kinematics (05)
 - Kangragian Mechanics (05)
 - Visibility graph construction (05)
 - d Wave-front planner (05)

----- XXX -----

		(3 Hours)	[Total Marks :80
N.B.	: (1) (2)	Question No. 1 is compulsory. Attempt any three questions out of the remaining five	questions.
1. A	nswer th	ne following:-	20
	(a)	Explain the soft, softer and soft-softer handoff.	
	(b)	Explain umbrella cell approach in cellular system	
	(c)	Explain the services and features of GSM.	
	(d)	Discuss the need for 3G cellular networks.	
2 (v) Evolo	in the UMTS network architecture in detail with interfaces.	10
`	· •	in the CDMA 2000 technologies.	10
(t) Expia	in the CDWA 2000 technologies.	IV.
3. (a	a) Expla	ain the frame structure for GSM.	10
`	/	ain the following for GSM:	
(-	(i)	Diagonal interleaving	2
	(ii)		2
	(iii)		2
	(iv)	T'N ACTY 1	2
	(v)	Short Message Service (SMS)	2
4. (a	a) Expla	ain the 4G LTE architecture with a near block diagram.	10
		ass Mobile IP in detail.	10
	\ ~~~		
5. (8	a) With	a neat block diagram explain the forward traffic channel proce	essing in COMA. 10
(t	o) Cons	ider a cellular system in which the total available voice chann	nels to handle 10
		c are 480. The area of each cell is 5sq.km and the total covers	age area or me
	•	m is 3000 sq.km. For the elector circle of 7, find the novel channels per cell, r	no of cluetare
	(1)	For the cluster size of 7, find the no. of channels per cell, r	io. of clusters,
	(::)	and the system capacity. For the cluster size of 4, repeat the above calculations	
	` /	Comment on the result	
	(111)	Comment on the result	
6 V	Vrite sho	rt notes on any four:	20
(). •	(a)	WSN	
	\	GPRS	
	(€) (€)		
	() () () ()	Mobility and resource management in CDMA	
√			
So.	<u>`</u>		
9			

Sem VIII 1815/16

Biomodical ETPX

Ele chive

Q.P. Code: 718602

(3 Hours)

[Total Marks: 80

N.	B.:	 Question No.1 is compulsory. Answer any Three out of remaining Five questions. Figures on the right indicate full marks. Assume data wherever necessary. 	
1.	` /	Draw and explain the generation of Nerve Action Potential.	5
		Explain the construction and working of X-ray Tube. Draw neat labelled diagram of Electrocardiogram with amplitudes and time	5
	(C)	durations of every peak in Lead II configuration.	
	(d)	Explain what do you understand by Micro and macro shock.	5
2.	(a)	Draw and explain ECG recording in 12 Lead configuration.	10
	(b)	Explain Ultrasonic Blood flow measurement technique.	10
3.		Explain the A,B, M and TM Mode of Ultrasound.	10
	(b)	Explain using suitable diagram working of Haemodialysis machine.	10
4.	(a)	Design a variable gain preamplifier for ECG Signals.	10
	(b)	Explain using suitable diagram, indirect method of blood pressure measurement using sphygmoman ometer.	10
5.	(a)	Draw and explain various types of electrodes and their applications for	10
	(h)	Bio-potential measurement. Explain the working of a pacemaker using suitable block diagram. Also	10
	(0)	mention various modes of pacemaker.	
6.	V	Vrite short notes on (any Three):	2(
		(a) Dye dilution method.	
		(b) D.C defibrillator.	
		(c) Càrdiovascular system. (d) Mothods of accident prevention by electrical safety	
		(d) Methods of accident prevention by electrical safety.	

546: ADDANCED BACTWOKKING COLLOGGE

Dt. 30105 116

B.E. CETRX) VIII SEM. CBGS

Advance Metworking Technologies

Q.P. Code: 733701

		(3 Hours) [Total Ma	arks: 80
N.E	(2) (3)	Question No. 1 is compulsory. Attempt any Three from the remaining. Figures to the right indicate full marks. Assume suitable data wherever required.	
1.	Attemp (a) (b) (c) (d) (e)	Explain SONET frame format with neat diagram. Describe the term DMZ. What is the need of DWDM? Explain its working principle.	20
	b) With	cribe ubiquitous and hierarchical access and compare them. the neat diagram, explain frame format of Frame Relay, How conges rol is implemented in it.	tion 10
3. ((a) Expl	ain Bluetooth protocol stack. ain ATM protocol architecture in detail.	10 10
	•	v and explain IEEE 802.15.4 LR-WPAN Device architecture. respect to network management, explain following terms: Documentation OAM & P	10
	b) What	ain network security threats and network security safeguards. t is firewall? What are the capabilities and limitation of firewall? Discrent types of firewall.	10 cuss 10
6.	Write a (a) (b) (c) (d) (e)	Role of VCI and VPI in ATM SNMP	20