Sem III CBGS (ETRX) Digital Ckts & Design

QP Code: 30651

(3 Hours)

Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.	
(2) Solve any three from remaining five questions.	
(3) Draw neat logic diagram and assume suitable data wherever necessary.	
Q 1 (a) Interfacing between CMOS and TTL	05
(b) Explain Shift Register and its applications	~ S.
(c) PLA and PAL	505
(d) Draw truth table and logic diagram of Full Subtractor	05
Q 2 (a) Write a VHDL code for Full Adder	10
(b) Design MOD 8 asynchronous counter.	10
Q 3 (a) Design a mealy sequence detector to detect 0101 using D flip-flops and logic gates	10
(b) Design a circuit with optimum utilization of PLA to implement the following functions	10
$F1 = \sum m(0, 2, 5, 8, 9, 11)$	
$F2 = \sum m (1, 3, 8, 10, 13, 15)$	
$F3 = \sum m (0, 1, 5, 7, 9, 12, 14)$	
Q 4 (a) Implement following function using 8:1 MUX and logic gates	10
$P(A,B,C,D) = \sum_{i=1}^{n} (1,2,6,7,8,10,13,14)$	
(b) Construct ring counter using IC 74194 and the output waveform	10
Q 5 (a) Use K-map to reduce following function and then implement it by NOR gates.	10
$F = \pi M (1, 2, 5, 8, 10, 12, 15) + d (0, 6)$	
(b) Design 6 bit up counter using IC 74163, draw a circuit diagram and explain its working.	10
6. Write short notes on any three	20
i) JTAG and BIST	
ii) Stuck at '0' and '1' faults	
iii) XC 4000 FPGA architecture block diagram	
iv) Noise Margins	

FW-Con.: 11010-16

Electronic Instruments and Measurements.

(3 Hours)

Total Marks: 80

N.	В.:	(1) Question No.1 is Compulsory.	
		(2) Attempt any Three questions from remaining Five questions.	2
			OP
		 Solve All a) Define:- Accuracy, Precision, Linearity, Sensitivity, Resolution b) Write specifications of analog multimeter. c) Discuss the role of delay line in CRO. d) Explain selection criteria of transducers 	(20)
	1.	Solve All	(20)
		a) Define:- Accuracy, Precision, Linearity, Sensitivity, Resolution	
		b) Write specifications of analog multimeter.	
		c) Discuss the role of delay line in CRO.	
		d) Explain selection criteria of transducers.	
			(10)
	2.	a. Explain in detail linear variable differential transformer.	(10)
		b. Draw and explain multichannel data acquisition system.	(10)
	8	The second Algo	(10)
2	3.	a. Discuss the working principle of RTD, Thermistor and Thermocouple. Also	(10)
		write their ranges and applications.	(10)
		b. Draw and explain the Maxwell bridge.	(10)
	4	Description block diagram of CPO	(10)
	4.	a. Draw and explain block diagram of CRO.b. Write short note on "PC based instrumentation system".	(10)
		b. Write short note on PC based institute that on system.	(10)
	5	a. Explain the liquid level measurement using capacitive type method.	(10)
	٥.	b. What is error? Write the classification of errors. Also discuss the methods	(10)
		to eliminate/reduce the errors during measurement.	
		to eminiate/reduce the circle during measurement.	
	6	Write short notes on:-	(20)
	0.	a. Wheatstone bridge	
		b. Applications of DSO	
		c. Resistance strain gauge	
		d. Turbine flow meter	
		d. Turbine flow meter	

S.E. SEM-III ETRX (CBSGS) 30/5/16

Circuit Theory.

QP Code: 30699

(3 Hours)

Total Marks: 80

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from remaining questions.
 - (3) Use Smith chart wherever required.
 - (4) Assume suitable data if required.
- 1. (a) Test for following polynomial using continued fraction expansion only $P(s) = s^5 + 12s^4 + 45s^3 + 60s^2 + 44s + 48$
 - (b) Obtain transmission parameters (ABCD) in terms of z-parameters.
 - (c) List the types of damping in a series R-L-C circuit and mention the condition for each damping.
 - (d) Obtain S-domain (Laplace Transform) equivalent circuit diagram of an inductor and capacitor with initial condition.
- 2. (a) Calculate voltage across the resister 6Ω using source shifting technique. 10

(b) Compare and obtain Foster-I and Foster-II form using example of RC 10 circuit

$$Z(s) = \frac{(s+1) (s+6)}{s(s+4) (s+8)}$$

- 3. (a) Design a short circuit shunt stub match for $Z_L=450-600 \mathrm{j}(\Omega)$. For a line of $Z_0=300(\Omega)$ and f=20 MHz. Use Smith chart
 - (b) In the circuit shown determine current I_1 and I_2 when switch is closed 10

[TURN OVER

5

5

10

4. (a) determine Y-parameter using interconnection of two port networks 10

(b) Check for positive real function test

 $F(s) = \frac{2s^2 + 2s + 1}{s^3 + 2s^2 + s + 2}$

(c) Compare Cauer-I and Cauer-II form of LC network

 $Z(s) = \frac{2(s^2 + 1)(s^2 + 4)}{s(s^2 + 2)}$

(a) Obtain i(t) for t>0

where r(t) is a ramp signal

(b) Derive an expression for characteritic equation of a transmission line. 10 Also obtain 'a', '\beta' and '\gamma' of the line.

8 (a) Find Thevenin's equivalent of following n/w VHS TURN OVER (b) Explain various types of filters.

(c) Obtain $Z_{11}(s)$, $Z_{21}(s)$, $G_{21}(s)$ for the ladders n/w.

sem-III (CB GS) Por: Electronics Electronics Devices

QP Code: 30554

		(3 Hours) [Total Marks: 8	30
N	I.B. :	(1) Question No. 1 is compulsory and Solve any three questions from remaining questions	
	20	(2) Assume suitable data wherever applicable.	
		(3) Draw neat and clean diagrams.	- 5
1.	. Aı	nswer any four.	δ,
		(a) Justify that the space charge width increase with reverse biased voltage in a p-n junction diode.	20
		(b) Explain zener diode application as voltage regulator	
		(c) Define internal pinchoff voltage, pinchoff voltage and drain to	
		source saturation voltage.	
		(d) Describe construction and V-I characteristics of JGBT.	
		(e) Explain two terminal MOS structure.	
2.	(a)	Explain concept, working and characteristics of Tunnel diode.	
	(b)	Explain the types of innotion breakdars:	0
			0
3.	(a)	For a n-channel JFET with $I_{DSS} = 8 \text{ mA}$, $V_p = -4 \text{ V}$	0
	£0.	(i) If $ID = 3mA$ calculate the value of V_{ab}	
		(ii) Calculate $V_{DS (SAT)}$ for $ID = 3mA$	
	ZES	(iii) Calculate transconductance (g_)	
	(b)	Explain minority carrier distribution in BJT considering transistor in 1	0
		active, cut off and saturation mode.	
4.	(a)	Compara Enhancement Q	
	(a)	Compare Enhancement type and Depletion type MOSFET on the basis	0
	(b)	of their construction, working principle, characteristics and biasing.	
	(0)	Discuss construction and working of SCR with its characteristics in detail. 1	0
5.	(a)	Discuss Ebers Moll model for BJT in detail.	
	(b)	Discuss HRT in detail	0
		1	0
6.	Wri	ite short notes	Λ
		(a) Optocoupler	0
	2/9	(b) Gunn diode	
	-	(c) MESFET	
	50,	(d) DIAC-TRIAC	

FW-Con. 9412-16.

Applied Maths-III

QP Code: 30598

(Revised course)

Time: 3 hours

Total marks:80

N.B: (1) Question No.1 is compulsory.

- (2) Answer any three questions from remaining.
- (3) Assume suitable data if necessary.

Evaluate

1. (a)

$$\int_{0}^{\infty} e^{-2t} \left(\frac{\sinh t \sin t}{t} \right) dt$$

05

(b) Obtain the Fourier Series expression for $f(x) = 9 - x^2$ in (-3,3)

0.

(c) Find the value of 'p' such that the function f(z) expressed in polar co-ordinates as

05

 $f(z) = r^3 \cos p\theta + ir^p \sin 3\theta$ is analytic.

(d) If $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$. Show that \overline{F} is irrotational and solenoidal.

05

2. (a) Solve the differential equation using Laplace Transform

06

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$$
, given y(0)=0 and y'(0)=1

(b) Prove that $J_4(x) = \left(\frac{48}{x^2} - \frac{8}{x}\right) J_1(x) - \left(\frac{24}{x^2} - 1\right) J_0(x)$

06

(c) i) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2,-1,2) in the direction of $2\hat{i} + 3\hat{j} + 6\hat{k}$.

08

ii) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

Prove that $\nabla \log r = \frac{\overline{r}}{r^2}$

TURN OVER

Applied Maths-III

QP Code: 30598

(Revised course)

Time: 3 hours

Total marks:80

N.B: (1) Question No.1 is compulsory.

- (2) Answer any three questions from remaining.
- (3) Assume suitable data if necessary.

Evaluate

1. (a)

$$\int_{0}^{\infty} e^{-2t} \left(\frac{\sinh t \sin t}{t} \right) dt$$

05

(b) Obtain the Fourier Series expression for $f(x) = 9 - x^2$ in (-3,3)

0.

(c) Find the value of 'p' such that the function f(z) expressed in polar co-ordinates as

05

 $f(z) = r^3 \cos p\theta + ir^p \sin 3\theta$ is analytic.

(d) If $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$. Show that \overline{F} is irrotational and solenoidal.

05

2. (a) Solve the differential equation using Laplace Transform

06

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$$
, given y(0)=0 and y'(0)=1

.

(b) Prove that (48 8)

 $J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) - \left(\frac{24}{x^2} - 1\right) J_0(x)$

06

(c) i) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2,-1,2) in the direction of $2\hat{i} + 3\hat{j} + 6\hat{k}$.

08

ii) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

Prove that $\nabla \log r = \frac{\overline{r}}{r^2}$

TURN OVER

FW-Con. 10552-16.

06

- 06 3. (a) Show that $\{\cos x, \cos 2x, \cos 3x, \ldots\}$ is a set of orthogonal functions over $(-\pi,\pi)$. Hence construct an orthonormal set.
 - (b) Find an analytic function f(z) =u+iv where.

$$u = \frac{x}{2}\log(x^2 + y^2) - y \tan^{-1}\left(\frac{y}{x}\right) + \sin x \cosh y$$

- (c) Find Laplace transform of
 - i) $\int ue^{-3u}\cos^2 2udu$
 - ii) $t\sqrt{1+\sin t}$
- 4. (a) Find the Fourier Series for

Find the Fourier Screen
$$f(x) = \frac{3x^2 - 6\pi x + 2\pi^2}{12}$$
 in $(0, 2\pi)$

$$f(x) = \frac{3x^2 - 6\pi x + 2\pi^2}{12} \quad \text{in } (0, 2\pi)$$
Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} = \frac{\pi^2}{6}$

Prove that
$$\int_0^1 x J_0(ax) dx = \frac{b}{a} J_1(ab)$$

Find
$$i) L^{-1} \left[\log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$$

::) $r^{-1} \left(\frac{s + (2)}{s(s+1)} \right)$

- (b) Prove that
- c) Find

i)
$$L^{-1} \left[\log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$$

ii)
$$L^{-1}\left[\left(\frac{s+2}{s^2-2s+17}\right)\right]$$

TURN OVER

06

08

5. (a) Obtain the half range cosine series for

$$f(x) = x, 0 < x < \frac{\pi}{2}$$
$$= \pi - x, \frac{\pi}{2} < x < \pi$$

(b) Find the Bi-linear Transformation which maps the points 1,i,-1 of z plane onto i,0,-i of w-plane

06

(c) Verify Green's Theorem for $\int_{C} \overline{F} \cdot dr$ where $\overline{F} = (x^2 - xy)\hat{i} + (x^2 - y^2)\hat{j}$ and C is the curve bounded by $x^2 = 2y$ and x = y

08

6.(a) Show that the transformation $w = \frac{i - iz}{1 + z}$ maps the unit circle |z| = 1 into real axis of w plane.

06

(b) Using Convolution theorem find

06

$$L^{-1}\left[\frac{s}{(s^2+1)(s^2+4)}\right].$$

08

- i) Use Gauss Divergence Theorem to evaluate $\iint_{S} \overline{F} \cdot \hat{n} ds \text{ where } \overline{F} = x\hat{i} + y\hat{j} + z\hat{k} \text{ and } S \text{ is the sphere}$ $x^{2} + y^{2} + z^{2} = 9 \text{ and } \hat{n} \text{ is the outward normal to } S$
- 0
- ii) Use Stoke's Theorem to evaluate $\int_{C} \overline{F} \cdot dr$ where $\overline{F} = x^{2}\hat{i} xy\hat{j}$ and C is the square in the plane z=0 and bounded by x=0,y=0,x=a and y=a.