5 QP Code: 30754 (3 Hours) [Total Marks: 80 - (1) Attempt questions No. 1 and any 3 from remaining questions. In all N.B.: 4 questions are to be attempted. - (2) All sub-questions of the same question should be answered at one place only in their serial orders, and not scattered. - Assume suitable data with justification if missing. - 1. (a) Determine Y parameters for the network shown in fig 1 (a) - (b) Test if $F(s) = S^4 + S^3 + 5S^2 + 3S + 4$ is a Hurwitz polynomial. - (c) Two coils connected in series have self inductance 80 mH & 20 mH respectively The total inductance of the circuit is found to 140 mH. Determine the - (i) mutual inductance between two coils and - (ii) The coefficient of coupling - (d) Synthesize the following function into a network. $z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$ using cauer -1 form. [TURN OVER] (a) Find the Thevenin's equivalent across the terminals XY for the circuit shown in fig 2 (a) (b) Determine the node voltage at node (1) & (2) of the Network Shown in fig 2(b) by using nodal analysis. 5 (c) Test Whether $$F(s) = \frac{s(s+3)(s+5)}{(s+1)(s+4)}$$ is a positive real function. [TURN OVER] 3. (a) Synthesize the driving point function using Foster -I and Foster -II form. 10 $$z(s) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$$ (b) State and prove Initial value theorem. (c) A Transmission line has distributed parameters R=6 Ohms / km, L=2.2 mH/km $C=0.005 \mu F / km & G = 0.005 \mu mho / km$ Determine characteristics impedance and propagation constant at 1KHz frequency 4. (a) Find ABCD parameters for the two port Network shown in fig 4 (a). 10 (b) Find the Network functions for the network shown in fig 4 (b) - (c) A Transmission line has a characteristics impedance of 50+j 100Ω and is terminated in a load impedance of 73 j 42.5 Ω Calculate - 5 5 - (a) The reflection coefficient. - (b) The standing wave ratio - 5. (a) The Network shown in fig 5 (a), switch K is closed at t = 0, Assume all initial conditions as zero. Find i, $\frac{di}{dt} & \frac{d^2i}{dt^2}$ at $t = 0^+$ (b) Write the KVL equations in standard form for the N/W shown in fig 5(b) [TURN OVER] 5 5 (c) Find poles and zero of the Impedance Z(s) for the Network Shown in fig 5 (c) - 6. (a) Why is the Impedance matching required? Draw the following normalized quantities on the smith chart. - (i) $(3+i3) \Omega$ - (ii) $(1.0) \Omega$ - (iii) (2-j1) Ω - (i) j 1.0 Ω - (b) Write short note on: Time domain analysis using Laplace Transform. - (c) Define the following terms - (i) Phase Velocity - (ii) Characteristic impedance - (iii) Reflection coefficients (3 Hours) 30/5/16. **QP Code: 30714** [Total Marks: 80 | | N. B | (1) Question No.1 is compulsory. (2) Out of remaining question, attempt any three questions. (3) Assume suitable additional data if required. (4) Figure to the right of question indicates full marks. (5) Write your answers in ink only. | The state of s | |----|------------|---|--| | | Atte | mpt any four: (a) Explain Alternate mode and Chop mode in a dual trace oscilloscope. (b) What is cold junction compensation in thermocouples. (c) Write a note on piezoelectric transducer. (d) Which is fastest ADC and why? | 20 | | | | (e) Define accuracy, precision and sensitivity with suitable example. (f) Compare Analog instrument with Digital Instrument. | 20 | | 2. | (a) | Explain the principle, working and construction of LVDT. What is meant by residual voltage? | 10 | | 3. | (b) | Draw neat block diagram of Dual Beam Oscilloscope. Give the comparison between Dual Trace and Dual Beam Oscilloscope. | 10 | | 3. | (a) | What are the various D/A Converting Techniques? Explain any one technique. | 10 | | | (b) | What is the basic principle of wave analyser? Explain heterodyne type wave analyser with application. | 10 | | 4. | (a) | Explain Kelvin's double bridge and its application in very low resistance measurement. | 10 | | | (b) | Draw and discuss Hey Bridge and its application for measurement of inductance. | 10 | | 5. | | Explain the principle and working of operation of dual slope DVM. Define Q factor and explain working of a Q meter for Q factor measurement. | 10
10 | | 6. | (a) | Draw block diagram for generalised measurement system and explain its components. | 5 | | | (b) | List various sensors for pressure and temperature along with their ranges. | 5 | | 5 | (c)
(d) | Brief out classification of errors in measurements. Explain electrodynamometer type watt meter. | 5
5 | | U | 3. 150 | | | QP Code: 30666 ### (3 Hours) Max Marks: 80 | The Park of the Park | Question No. 1 is compulsory. | |----------------------|--| | 2. | Out of remaining questions, attempt any three questions. | | | Assume suitable additional data if required. | 4. Figures in brackets on the right hand side indicate full marks. | | | | 70 | |------|--------------|--|-------| | 1. | (A) | Compare Combinational circuits with Sequential circuits. | (05) | | 1000 | (B) | Compare Synchronous with Asynchronous counter. | (05) | | | (C) | Compare TTL with CMOS logic families. | (05) | | | (D) | Compare PLA with PAL. | (05) | | | (-) | Compare Synchronous with Asynchronous counter. Compare TTL with CMOS logic families. Compare PLA with PAL. | | | 2. | (A) | Write the VHDL code for 2-bit up-down counter with positive edge | (10) | | | | triggered clock. | | | | (B) | State and prove the De Morgan's theorem. | (05) | | | (C) | Draw the block diagram of internal architecture of XC4000 family | (05) | | | 70 % | FPGA. | | | | 20 | | | | 3. | (A) | Design synchronous counter using T-type flip flops for getting the | (10) | | | | following sequence: $0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 0$. Take care of lockout | | | | | condition. | | | | (B) | Convert T-type flip flop into D-type flip flop. | (05) | | | (C) | Write (AB) ₁₆ into its BCD code and Octal code. | (05) | | | | 1/2 | 24.00 | | 4. | (A) | | (10) | | | | few logic gates: | | | | | $F(P,Q,R,S) = \prod M(0, 2, 5, 6, 7, 9, 12, 15).$ | | | | (B) | Compare FPGAs with CPLDs | (05) | | | (C) | Implement $Y = A + \overline{B}C$ using only NOR gates. | (05) | | | (0) | | 70 50 | | 5. | (A) | Draw a neat circuit of BCD adder using IC 7483 and explain. | (10) | | ٥. | (B) | Using Quine McClusky method, minimize the following: | (10) | | | (D) | $F(P,Q,R,.S) = \sum_{n} m(0,1,3,7,8,9,15) + d(2,10,11).$ | | | | | $\Gamma(\Gamma,Q,\Lambda,S) = \sum_{i=1}^{m} (0,1,3,7,0,3,13) + i(2,10,11).$ | | | | | O | 710 | | 6. | (A) | | (10) | | | | 1101 using. Extype flip flops. | (40) | | | (B) | What is shift register? Explain any one type of shift register. Give its | (10) | | | | application. | | FW-Con.: 11014-16. ROIBAR QP Code: 30569 (3 Hours) [Total Marks: 80 N.B.: (1) Question No. 1 is compulsory. - (2) Attempt any three questions out of remaining five questions. - (3) Assume suitable data if required and mention the same in answer sheet. - 1. Attempt any five questions :- - (a) Find V_E and I_E for the circuit given below. (b) For the circuit given below find I_D, V_{DS}, V_{GG} (c) Write down current equation of diode and explain significance of each parameters. (d) Explain the concept of thermal runaway in BJT. FW-Con. 9416-16. TURN OVER (e) Draw the output Waveform Vo for circuit shown. - (f) State and explain Barkhausen's criteria for oscillations. - 2. (a) Determine Q-Print and draw d.c. load line for the amplifier shown. (b) Derive the expression for frequency of oscillation for a BJT RC phase shift oscillator. [TURN OVER FW-Con. 9416-16. # Semill EXTC (CBGS) Analog Ele QP Code: 30569 - 3 - (a) Determine voltage gain, Input resistance and output resistance for the MOSFET amplifier shown. - (b) Explain the working and characteristics of n-channel Junction Field Effect Translators (JFET) - 4. (a) Draw the output waveform V_0 for ckt shown if (i) Vr = 0V (ii) Vr = 0.7v 10 where Vr is cutin voltage of diodex. [TURN OVER FW-Con.9416-16. - (b) For the common base circuit shown, the transistor has parameters $\beta = 120$ and $V_A = \infty$ - (i) Determine the quiescent V_{CEQ} - (ii) Determine the small signal voltage gain and output resistance. 5. (a) For the Amplifier shown determine (i) Q point (ii) Av. Zi, Zo [TURN OVER FW-Con. 9416-16 ## Applied Maths-III QP Code: 30598 (Revised course) Time: 3 hours Total marks:80 N.B: (1) Question No.1 is compulsory. - (2) Answer any three questions from remaining. - (3) Assume suitable data if necessary. Evaluate 1. (a) $$\int_{0}^{\infty} e^{-2t} \left(\frac{\sinh t \sin t}{t} \right) dt$$ 05 (b) Obtain the Fourier Series expression for $f(x) = 9 - x^2$ in (-3,3) 0. (c) Find the value of 'p' such that the function f(z) expressed in polar co-ordinates as 05 $f(z) = r^3 \cos p\theta + ir^p \sin 3\theta$ is analytic. (d) If $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$. Show that \overline{F} is irrotational and solenoidal. 05 2. (a) Solve the differential equation using Laplace Transform 06 $$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$$, given y(0)=0 and y'(0)=1 (b) Prove that $J_4(x) = \left(\frac{48}{x^2} - \frac{8}{x}\right) J_1(x) - \left(\frac{24}{x^2} - 1\right) J_0(x)$ 06 (c) i) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2,-1,2) in the direction of $2\hat{i} + 3\hat{j} + 6\hat{k}$. 08 ii) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ Prove that $\nabla \log r = \frac{\overline{r}}{r^2}$ TURN OVER ## Applied Maths-III QP Code: 30598 (Revised course) Time: 3 hours Total marks:80 N.B: (1) Question No.1 is compulsory. - (2) Answer any three questions from remaining. - (3) Assume suitable data if necessary. Evaluate 1. (a) $$\int_{0}^{\infty} e^{-2t} \left(\frac{\sinh t \sin t}{t} \right) dt$$ 05 (b) Obtain the Fourier Series expression for $f(x) = 9 - x^2$ in (-3,3) 0. (c) Find the value of 'p' such that the function f(z) expressed in polar co-ordinates as 05 $f(z) = r^3 \cos p\theta + ir^p \sin 3\theta$ is analytic. (d) If $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$. Show that \overline{F} is irrotational and solenoidal. 05 2. (a) Solve the differential equation using Laplace Transform 06 $$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$$, given y(0)=0 and y'(0)=1 . (b) Prove that (48 8) $J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) - \left(\frac{24}{x^2} - 1\right) J_0(x)$ 06 (c) i) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2,-1,2) in the direction of $2\hat{i} + 3\hat{j} + 6\hat{k}$. 08 ii) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ Prove that $\nabla \log r = \frac{\overline{r}}{r^2}$ TURN OVER FW-Con. 10552-16. - 06 3. (a) Show that $\{\cos x, \cos 2x, \cos 3x, \ldots\}$ is a set of orthogonal functions over $(-\pi,\pi)$. Hence construct an orthonormal set. - (b) Find an analytic function f(z) =u+iv where. $$u = \frac{x}{2}\log(x^2 + y^2) - y \tan^{-1}\left(\frac{y}{x}\right) + \sin x \cosh y$$ - (c) Find Laplace transform of - i) $\int ue^{-3u}\cos^2 2udu$ - ii) $t\sqrt{1+\sin t}$ - 4. (a) Find the Fourier Series for Find the Fourier Screen $$f(x) = \frac{3x^2 - 6\pi x + 2\pi^2}{12}$$ in $(0, 2\pi)$ $$f(x) = \frac{3x^2 - 6\pi x + 2\pi^2}{12} \quad \text{in } (0, 2\pi)$$ Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} = \frac{\pi^2}{6}$ Prove that $$\int_0^1 x J_0(ax) dx = \frac{b}{a} J_1(ab)$$ Find $$i) L^{-1} \left[\log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$$::) $r^{-1} \left(\frac{s + (2)}{s(s+1)} \right)$ - (b) Prove that - c) Find i) $$L^{-1} \left[\log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$$ ii) $$L^{-1}\left[\left(\frac{s+2}{s^2-2s+17}\right)\right]$$ TURN OVER 06 5. (a) Obtain the half range cosine series for $$f(x) = x, 0 < x < \frac{\pi}{2}$$ $$= \pi - x, \frac{\pi}{2} < x < \pi$$ (b) Find the Bi-linear Transformation which maps the points 1,i,-1 of z plane onto i,0,-i of w-plane 06 (c) Verify Green's Theorem for $\int_{C} \overline{F} \cdot dr$ where $\overline{F} = (x^2 - xy)\hat{i} + (x^2 - y^2)\hat{j}$ and C is the curve bounded by $x^2 = 2y$ and x = y 08 6.(a) Show that the transformation $w = \frac{i - iz}{1 + z}$ maps the unit circle |z| = 1 into real axis of w plane. 06 (b) Using Convolution theorem find 06 $$L^{-1}\left[\frac{s}{(s^2+1)(s^2+4)}\right].$$ - i) Use Gauss Divergence Theorem to evaluate $\iint_{S} \overline{F} \cdot \hat{n} ds \text{ where } \overline{F} = x\hat{i} + y\hat{j} + z\hat{k} \text{ and } S \text{ is the sphere}$ $x^{2} + y^{2} + z^{2} = 9 \text{ and } \hat{n} \text{ is the outward normal to } S$ - 0 - ii) Use Stoke's Theorem to evaluate $\int_{C} \overline{F} \cdot dr$ where $\overline{F} = x^{2}\hat{i} xy\hat{j}$ and C is the square in the plane z=0 and bounded by x=0,y=0,x=a and y=a.