Sem-II/5ld EXTC/Applied made II **QP Code :544700** ## [OLD COURSE] (3 Hours) [Total Marks:100] - N.B. (1) Question No. 1 is compulsory. - (2) Attempt Any FOUR questions out of the remaining SIX questions. - (3) Figures to the right indicate full marks. - 1(a) Prove that eigen values of Hermitian matrix are real. (c) A vector field is given by $\overline{F} = (y\sin z - \sin x)\hat{i} + (x\sin z + 2yz)\hat{j} + (xy\cos z + y^2)\hat{k}$. Show that \overline{F} is irrotational and hence find its and (d) Prove that $J_{-1}(x) = \sqrt{\frac{2}{\pi x}} \cos x$. [5] 2(a) Verify Green's theorem in plane for $\int (xy + y^2)dx + x^2dy$ where x is the close curve of the region bounded by y = x and $y = x^2$. [8] [6] (b) If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that 3 tanA=A tan3 (c) Find the image of the region bounded by x = 0, x = 2, y = 0, y = 2 in the Z plane under [6] 3(a) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & 2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalizable . Find the transforming matrix and the diagonal matrix. [8] (b) Evaluate $\int_{zdz}^{-} zdz$ along $x = t^2$, y = t from O(0,0) to B(4,2) [6] (c) Evaluate $\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is circle |z|=3. [6] 4(a) Reduce the given quadratic form $2x^2 + y^2 - 3z^2 + 12xy - 4xz - 8yz$ to canonical form and find rank and signature (b) Evaluate by Residue theorem, [6] (c) Prove that $$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$$ [6] 5(a) Expand f(z) = $$\frac{1}{z^2(z-1)(z+2)}$$ about z=0 when i) |z|<1 ii) 1<|z|<2 iii) |z|>2 [8] (b) Using Cayley Hamilton theorem find $A^6 - 6A^5 + 9A^4 + 4A^3 - 12A^2 + 2A - I$ where $$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$ - (c)Find the bilinear transformation which maps the points z= 1,i,-1 from the Z plane on to the points 0,1,∞ in W plane [6] - 6(a) By using Stoke's theorem evaluate $\int_C [(x^2+y^2)\hat{i}+(x^2-y^2)\hat{j}].dr$ where C is the boundry of the region enclosed by circles $x^2+y^2=4$, $x^2+y^2=16$. [8] [8] - (b) Show that the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is non derogatory. [6] $$f(x) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}} \quad z \neq 0$$ z = 0 is not analytic at the origin although Cauchy Riemann equations are satisfied. [6] 7(a) Evaluate $\iint \overline{F} \cdot ds$ using Gauss Divergence theorem, where $\overline{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ and S is the region-bounded by $y^2 = 4x, x = 1, z = 0, z = 3$ [8] (b) Find the image of a circle |z|=2 under the transformation w= z+3+2i.Also draw [6] the figure (c) Expand f(x)=1 in (0<x<1) in a series as $1=\sum \frac{2}{\lambda_n J_1(\lambda_n)} J_0(\lambda n(x))$ where $\lambda_1, \dots \lambda_n$... are positive roots of $J_0(x) = 0$ [6] O D Codo . 545101 | | | Q.P. Coae: 545101 | | |----|---------------|--|-----| | | | (3 Hours) Total Marks : | 100 | | | l.B. : | Question No. 1 is compulsory. Solve any four questions out of the remaining six questions. Assume suitable data wherever necessary. Support your answers with neat sketches wherever necessary. | | | 1. | | swer any four. (a) Derive boundry conditions for electrostatics. (b) Explain the concept of scalar and vector potential. (c) Derive Laplace and Poisson's equations. (d) State and explain Faraday's law. (e) Explain skin depth. Find skin depth at frequency 1.6MHZ in Aluminium whose α = 38.2 Ms/m and μr = 1.0 | 20 | | 2. | (a) | Derive the equation for field intensity due to infinite current carrying conductor. | 10 | | | (b) | Evaluate both sides of divergence theorem for the filed $D = 2xy\overline{a}x + x^2\overline{a}y$ c/m ² and the rectangular parallel piped formed by planes $x = 0$, $x = 1$, $y = 0$, $y = 2$, $z = 0$ and $z = 3$. | 10 | | 3. | (a) (b) | In the space, a line charge density 80 nc/m lies along the entire Z axis, while point charges of 100 nc each are located at $(1,0,0)$ and $(0,1,0)$. Find potential difference V_{PQ} given $P(2,1,0)$ and $Q(3,2,5)$. It is required to hold 3 equal point charges of $+Q$ each in equilibrium at the corner of an equilateral triangle. Calculate the point charge which will do this if placed at the centre of a triangle. | 10 | | 4. | (a)
(b) | Derive an expression for magnetic field intensity due to finite long straight element. Use Laplace's equation to find capacitance per unit length of a coaxial cable of inner radius 'a' and outer radius 'b'. Assume $V = Vo$ at $r = a$ and $v = 0$ at $r = b$. | 10 | | 5. | | State and derive experession for Poynting theorem. Explain each term in it. $\overline{H} = Hx(\omega t - \beta z) \overline{a}x$ exist within a dielectric of permittivity ε . Estimate the corresponding displacement current density and then find charge density and Electric field corresponding to H field. | 10 | | 6. | (a)
(b) | Derive electromagnetic wave equation for free space. Given $H = 6r \sin \phi \bar{a} r + 18r \sin \theta \cos \theta \bar{a} \phi$ Evaluate Stokes theorem of the sphere for the portion of the sphere with $r = 4$, $0 \le \phi \le 0.1\pi$, $0 \le \phi \le 0.3\pi$ | 10 | | 7. | (a)
(b) | Explain Maxwell's equation in differential and integral form for time-varying field. The circular loop conduction lies in $z = 0$ plane, has a radius of 0.1m and resistance of 5 ohm. Given $B = 0.20 \sin 10^3 t$ az (T). Determine the current in the loop. | 10 | | | | | | (3 Hours) [Total Marks: 100 | N.B.: | Question no. 1 is compulsory Attempt any four questions out of remaining six questions. Assume suitable data if required. | | |--------|---|-----| | 1. Ans | swer the following (any four) | | | | (a) Explain what double spotting is and how it arises? | 5 | | | (b) Why VSB transmission is better for TV transmission. | 5 | | | (c) Compare the Narrow band FM with wideband FM. | 5 | | | (d) State sampling theorem. Discuss its importance in communication. | 5 | | | (e) Why is the over modulation in AM System undesirable? | 5 | | 2. (a) | Draw the block diagram of a phase cancellation SSB generator and explain how the | | | | carrier and unwanted sidebands are suppressed. | 10 | | (b) | An A.F. signal 20 sin $(2 \pi x500 t)$ is used to amplitude modulate a carrier of | | | | $50 \sin (2 \pi x 10^5 t)$. | 10 | | | Calculate:- | | | | (i) Modulation index | | | | (ii) Sideband frequencies | 10 | | | (iii) Amplitude of each sideband | 10 | | | (iv) Bandwidth required | 10 | | | m 1 · 1 1 · · · · · · · · · · · · · · · | 10 | | 3. (a) | Explain the basic principle of FM demodulator. With the help of neat block and | | | Z • | phasor diagram explain the same in a Foster-seely discriminator. | 10 | | (b) | What is pulse-width modulation? How is it generated and demodulated? Sketch block | 1.U | | | diagram and explain with waveform. | 10 | | 4 () | (i) D : 41 4 = = = = = iti-ity, golootiyity, and Imaga fraguancy | 10 | | 4. (a) | \mathcal{L} | | | | (ii) What are the advantages that the superneterodyne receiver has over the TKr receiver? | | | (h) | Sketch block diagram of Delta modulation transmitter. Explain the following with | | | | appropriate wave forms- | | | | (i) Slope overload error | 10 | | | (ii) Hunting error | 10 | | | (11) II GIIGI | • | | 5. (a) | What are the different methods of FM generation. Explain the Indirect Method | | | | (Armstrong Method) of F.M. generation. | 10 | (b) Draw the block diagram of a PCM System and explain the function of each block. What makes it a digital system. - - | 6. | (a) Sketch the circuit diagram of a practical diode detector and explain the operation. How is AGC obtained from this detector?(b) Explain what is meant by negative clipping and diagonal clipping? What are the conditions required to avoid each of them? | 10 | |----|---|----| | 7. | Write Short note on (any four) (i) Pre-emphasis and De-emphasis (ii) Companding with respect to PCM (iii) Quantization (iv) SSB modulation (v) TRF receiver | 20 | ## SE-SEM-IV EXTC (OLD) 25/5/14 ## Electronic Devices & Circuits - II Q.P. Code: 544902 (3 Hours) [Total Marks: 100 N.B.: (1) Question No.1 and 2 is compulsory. - (2) Answer any three from remaining questions. - (3) Figures to the right indicate full marks. - (4) Assume suitable data if required. - 1. (a) Design a two stage R-C coupled BC547 amplifier for the following parameters: 15 Av \geq 900, VO = 3V F_L \leq 15Hz. - (b) For the above designed amplifier determine Vo (max), Vi (min) and Rin 5 - 2. (a) Design large signal class A transformer coupled power amplifier to provide 8W to 5Ω load - (b) For designed circuit find efficiency at full load. - 3. (a) For the feedback amplifier shown in figure identify type of feedback and calculate Avf, Rif and Rof. hfe = 60, hie= $1.2K\Omega$, hre = hoe = 0. (V_{CC} = 12V, Rc = 3 $K\Omega$, Rf = 50 $K\Omega$) - (b) Explain working of transistorised Schmitt trigger circuit with appropriate waveforms. - 4. (a) Derive the expression for frequency of oscillation and gain of Wein Bridge 10 oscillator. - (b) Design RC phase shift oscillator using JFET BFW 11 for frequency of oscillation 2 KHz. - 5. (a) Explain with block diagram different topologies of negative Feedback 10 amplifier. For the circuit shown in figure 2 ($V_{BE} = 0.7 \text{ V}$, $\beta ac = \beta dc = 100$, Vcc=12V, V_{EE} = -12V, R_{E} = 10K Ω $Rs=100\Omega$ and $R'_E=100\Omega$ ii) Ad Calculate i) Q point iii) Ac CMRR - Explain practical cascode amplifier and derive the expression for Av, Ri and 6. (a) Ro - Explain why a voltage amplifier can not be used as good power Amplifier. (b) - Write a short note on following. (any four) Voltage series feedback - Distortion in power amplifier - Darlington connection - Design of Heat Sink - Barkhausen's Criteria for oscillation TURN OVER **20** | | | | | | | | | | !
- | | | | | | | - | | | | |------------------------|---|--|------------------|-----------------|-------------------|------------------------------|----------|----------|-------------|-------------|-----------|----------------|------------|-------------|-----|--------------------|-------------|------------|-----------------| | Transistor type | P4max
(@ 25°C | C. C | Z Z Z | 20.2 | 20 (S) | A S S S S S S S S S S | 7 d 3 | × 20 € | | D.C. | CHFFERE | gair | Seed | . Sig. | | | / ** | 0.45 | Derate
abowe | | | Wars | | d.c. | £.c. | molis d.c. | rolts d.c. | . | d. | | min | typ. | FRIEZ. | | .yp. | | MGZ, | | <u> </u> | ¥ CC | | 2N 3055 | 115-5 | 15.0 | 1-1 | 8 | 8 | 20 | g | | 986 | 20 | 5 | ٤ | \ <u>×</u> | 5 | , T | 130 | ex | - | 9.3 | | ECM 055 | 28.0 | O | 2 | 04 | 25 | 55 | : 8 | • • | 200 | } | \$ | 28 | 3 5 |)
}
} | | 22 | - <u>-</u> | * ** | | | ECN 149 | 00£ | 7 | • | S | 40 | • | 1 | • | 150 | 8 | 8 | 110 | | 9 | | 115 | | 4 | 0-3 | | 2 | \$.0
\$.0 | 6-7 | 90 | 20 | 99 | 65 | 1 | ·
• | 8 | S | 8 | 82 | 8 | 6 | | 280 | 6-0 | 35 | 000 | | 14.7 | 0.25 | | 0-25 | \$ 0 | A S | <u>\$</u> | Į | ø | 125 | \$15 | 82 | 220 | ₹
Z | 07.2 | | 260 | 6.0 | į | ţ | | 2N 525(PNP)
BC1478 | 0-225 | ÷ ÷ | 0.25
0.25 | 3 | S 3 | 1 5 | 1 1 | ,
 • | 8 <u>22</u> | %
%
% | 18 | 3 3 | 1 % | 33.05 | | ! 景 | 1 % | | } | | Transistor type | Aic | hoe | Arc | | Oja | | | | | | | | | | | | | | | | BC 147A | 2.7 K Q | 18 to | 1.5 × | 1 | 04*C/m* | BFW | 111F | FET MUTU | AL CHAR | RACTERISTIC | STICS | | | | | | | | | | 525 | åc i | | | 5 | = | ₩
}- | and s | 9 | 0.2 | 0.4 0.6 | 8-0 9 | 1:0 | 1.2 1. | 6 20 | 2.4 | 2.5 | 3.0 | 3.5 4. | 0 | | 5C 1478 | 4. X. | 30t C | × | ř | A COMM | F | max, mA | 3.0 | 3 | 8.3 7.6 | 8-9 9 | | - | +- | 2.2 | 20 | | 0.0
0.0 | 10 | | 2 | 9 0 | | • F | } | | Its Cy | p. m.A | 7. | 0.5 | 5.4 | 6 4.0 | 3.3 | - | -2 | 0.2 | g | 000 | 000 | P | | ECM 0SS | 20 × | • | j | • | | 20.00 | thin. mA | 4-0 | | 2.2 1.6 | 6 1-0 | 0.5 | 0.0 | 0.0 | 0-0 | 3 | 0.0 | 00 | 6 | | | 3 | | • | | | | | | | , | !
- | | | 4 | | | | | | | Type | | Vos max. | Voor ma
Volts | | Voy mar.
Volis | P, mate. | 7, | max. | - | 5 | (typical) | 37 | Votes | | , | Derate
above 25 | 25°C | | 30.Z | | 243822 | | \$ | \$ | | 33 | 300 ₪₩ | | 75°C | 2 mA | X | 3000 m C | | 9 | SO KD | | 2 mW/ | ړ | 0-59 | 0-59℃/四₩ | | BFW 11 (typical) | | 30 | 30 | | 30 | 300 m¥ | ~ | 200°C | 7 m.V | × | Ω n 0095 | | 255 | SO XO | 2 | | | 0.58 | C/m≮ | | | | | | | | | | | | | | | 11 | +- | | | | | | • ## Subi-Analog & D'Ightan IC Design & Appin. QP Code: 28881 | | (3 Hours) [Total Man | ·ks: 1 | 100 | |-------------------|--|--|-----| | | N. B.: (1) Question No.1 is compulsory. | | | | | (2) Attempt any four questions out of remaining six question | ıs. | | | | (3) Figure to right indicate full marks. | | | | | (4) Assume suitable data whenever required. | | | | 1. | (a) Explain inverting Schmitt trigger. | | 35 | | | (b) Explain antilog amplifier. | | 5 | | | (c) Explain FPGA. | The second secon | 5 | | | (d) Differentiate between Moore and Melay circuit. | | 5 | | 2. | (a) With neat diagram explain 'two techniques of A to D conversion. | | 10 | | | (b) Draw and explain the block diagram of IC 810 audio power ampliful in detail. | ier | 10 | | 3 | (a) What is Instrumentation amplifier, explain it with three opamp, and was | rite | 10 | | J. | down advantages and disadvantages of it. | , , , , , | 10 | | | (b) Explain opamp as voltage to current converter and mention application of V-1 converter. | the | 10 | | | | | | | 4. | (a) ExplainMonostablemultivibrator using IC 555 with the internal circ | | 10 | | | diagram of IC 555, draw the wave form. Calculate the value of R | ınd | | | | C for pulse width of 20 ms. | <u>-</u> | 4 0 | | | (b) What are the performance parameters of DAC. Explain any | ne | 10 | | | technique of DAC. | | | | 5 | (a) Draw the internal block diagram IC XR 2206 and explain it. | | 10 | | Э. | (a) Draw the internal block magnatiff to AR 2200 and explain it. (b) Draw the ckt of basic integrator using op-amp. Find expression | for | 10 | | | output voltage. Explain disadvantage of basic integrator. | 101 | 10 | | | | | | | 6 | (a) Obtain the transfer function for KRC low pass filter and draw circuit. Calculate the component value if fo = 2 kHz. and Q = 4. | the | 10 | | υ. | circuit Calculate the component value if fo = 2 kHz . and $0 = 4$. | | | | | (b) Explain VCO IC 566 and its features. | | 10 | | | | | | | 7 | Write short notes on (any three):- | | 20 | | <i>,</i> . | (a) Explain current amplifier with grounded load. | | | | | (b) Explain the following term in relation to PLL: | | | | سر | (i) Lock range (ii) Capture range | | | | _ کر ٰ | | | | | 🏹 - 🔪 | · / • | | |