M.E(EXTC) - Sem-I (Choice - Based) QP Code: 841900 Statistical Signal Processing

4

4

(3 Hours)

[Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from the remaining five questions.
 - (3) Assume suitable data if needed and state it clearly.
 - (4) Figures to right indicate full marks.
- 1. Attempt any five:
 - Find the nullspace of (a)

 $\mathbf{A} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$

- Explain the application of Discrete KL Transform in data compression. (b) 4
- (c) Derive an expression for mean value of the output of an LTI system 4 when input is WSS process.
- Define and explain Skewness and Kurtosis. (d) 4
- (e) State the CRLB theorem. 4
- State the Kalman filtering problem. (f)
- 2. (a) Define Metric, Metric space, Norm, Induced norm. Vector space and state 5 its properties.
 - (b) Construct an orthonormal basis of R3 using Gram-Schmidt orthogonalisation 10 for the set of vectors $u_1 = (1, 2, 2)$, $u_2 = (-1,0,2)$ and $u_3 = (0,0,1)$.
 - (c) State the SVD theorem and explain its applications. 5
- 3. (a) State the central limit theorem 5
 - (b) Find mean, variance and characteristic function of uniform Random variable. 7
 - (c) Let Y=W+X, where W and X are independent random variables. 8 Derive an expression for the pdf of Y.
- 4. (a) For x(n) = A+w(n) n=0,1,...,N-1 where w(n) is WGN with zero mean 12 and variance σ^2 . Determine the CRLB for a DC level A.
 - (b) Define and explain bias of estimator, consistent estimator, minimum variance 8 unbiased estimator and efficient estimator.

	2		
5. (a)	(a) Consider a transformation $y = Q^H x$, where Q is an eigen matrix and denotes Hermition. Find the mean and autocorrelation of y . It is give that x is a zero mean random vector with correlation matrix.		
(b)	$\mathbf{R_x} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$ Explain LDU decomposition of an autocorrelation matrix \mathbf{R} and also explain its linear filtering interpretation.	10	
6. (a)	Explain in detail Kalman Filter I- Bayes Approach	10 5	
(b)	Write short note on Positive definite matrices		
(c)	State and explain Applications of Estimation theory.	5	