Time 3 hours Marks: 80

N.B: (1) Questions NO.1 is compulsory.

(2) Attempt any three questions out of remaining five questions.

(3) Assume suitable data if required.

(4) Figures to the right indicate full marks.

Q 1. Solve any four

20

- a. Determine the zeros of the following systems and indicate whether the system is minimum, maximum or mixed phase.
 - 1) $H_1(z) = 6+z^{-1}+6z^{-2}$
 - 2) $H_2(z)=1-z^{-1}-6z^{-2}$.
- b. What is multirate DSP? State its applications
- c. Compare BLT and impulse invariant method.
- d. Explain concept of decimation by integer D.
- e. If $X(K)=\{16,-4,0,-4\}$, determine x[n] using IFFT.

Q 2. a) If $x(n)=\{1,2,3,\}$ and $h(n)=\{1,0\}$

1) Find linear convolution using circular convolution.

2) Find circular convolution using DFT-IDFT.

10

b) Show the mapping from S plane to Z plane using impulse invariant method. Explain its limitations. Using this method determine H(z) if

$$H(s) = \frac{2}{(s+1)(s+2)}$$
 if Ts=1s.

Q3. a) Compute DFT of sequence $x(n) = \{1,2,3,4,5,6,7,8\}$ using DIT-FFT algorithm.

b) Design low pass IIR Butterworth filter for following specifications

Passband attenuation =1dB

Stopband attenuation =40dB

Passband edge frequency=200Hz

Stopband edge frequency=540Hz

Sampling frequency=8KHz

Use Bilinear transformation method.

10

Q 4. a) A low pass filter is to be designed with following desired frequency response. π π π

$$\begin{aligned} &\text{Hd}(e^{jw}) = e^{-j2w} & & -\frac{\pi}{4} \leq w \leq \frac{\pi}{4} \\ &= 0 & & \frac{\pi}{4} \leq w \leq \pi \end{aligned}$$

Determine the filter coefficients h_d(n) if the window function is defined as

- $w(n)=1 \qquad 0 \le n \le 4$
- =0 otherwise

Also determine the frequency response H (ejw) of the designed filter.

- b) Find DFT of $x(n)=\{1,2,3,4\}$. Using these results not otherwise find DFT
- i) $x_1(n) = \{4,1,2,3\}$
- ii) $x_2(n) = \{2,3,4,1\}$
- iii) $x_3(n)=\{6,4,6,4\}$
- Q 5 a) Explain subband coding of speech signal as a application of multirate signal processing.
- b) Determine the Direct form-I and Direct form-II realization for the system y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).

Q6. Write Short note on

- a) Dual Tone Multifrequency Detection using Goertzel's algorithm 07
- b) The effects of coefficients quantization in FIR filters.
- c) Concept of interpolation by integer factor I 06

TE-EXTC-VI- VLSI Deagn - CBGS 11/06/2018 Q.P.Co 7

Duration: 3 Hours

Marks:80

1] Question no.1 is compulsory

2] Attempt any three questions out of remaining questions

3] Assume suitable data if required

Q. No. 1) Attempt any four from the following

a) Calculate the voltage at the output node V_0 if $V_{DD}=5V$ and $V_{th}=1.5$

- b) Implement 2:1 multiplexer circuit using pass transistor logic and standard drawback. Draw the circuit using CMOS transmission gates.
- c) State the conditions required for the symmetric stati CMOS invert
- d) Compare ion implantation with diffusion stating its ε vantages and disadvantages.
- e) In 2-input CMOS NAND gate all PMOS transistors have (W/L)p = NMOS transistors have (W/L)n = 10. Draw its equivalent CMOS i simultaneous switching of all inputs and find size of PMOS a transistor in the equivalent inverter circuit.

Q. No. 2)

a) A CMOS inverter has following parameters

 $V_{DD} = 3.3 V$

 $V_{t0,n} = 0.6V$

 $V_{t0,p} = -0.7V$

 $K_0 = 200 \mu A/V^2$

 $Kp = 80 \mu A/V^2$

Calculate the noise margin of the circuit. Is the inverter ymmetric?

- b) Implement Y = A(B+C) + DE
 - (i) static CMOS logic
 - (ii) Dynamic logic
 - (iii) Depletion load logic
 - (iv) Pseudo NMOS logic

Q. No. 3)

a) Explain in detail the fabrication sequence of PMOS transistor was sectional view of each step.

Page 1 of 2

Q. P. Code: 36647

- b) Draw schematic and layout diagram of six transistor SRAM cell and explain Read and write operations. [10]
- Q. No. 4)
 - a) Compare constant field scaling with constant voltage scaling and state advantages and limitations in both the methods. Show the effect of scaling on power density and current density.
 - b) Design a 3- bit carry generator block of carry look ahead adder using multiple output domino logic (MODL) style. Explain how it achieves better speed compared to ripple carry adder. [10]
- Q. No. 5)
 - a) Draw layout diagram of two input CMOS NAND gate using lambda design Rules with $(L/W)_P=1/2$ and $(L/W)_n=2/1$. (Indicate scale in terms of lambda on layout). [10]
 - b) Draw transistor level CMOS negative edge triggered master slave D flip flop.

 [5]
 - c) What are the limitations of single phase clock? Explain with neat diagram two phase clock system. [5]
- Q. No. 6) Write short notes on any four

[20]

- i) ESD protection circuit.
- ii) 4x4 Barrel shifter
- iii) MOSFET Capacitances
- iv) Design rules and their necessity
- v) Clock skew and clock jitter
